Please wait a minute...
 
国土资源遥感  2019, Vol. 31 Issue (3): 20-28    DOI: 10.6046/gtzyyg.2019.03.03
  综述 本期目录 | 过刊浏览 | 高级检索 |
地表不透水面比例遥感反演研究综述
左家旗1,2, 王泽根1, 边金虎2(), 李爱农2, 雷光斌2, 张正健2
1. 西南石油大学土木工程与建筑学院,成都 610500
2. 中国科学院水利部成都山地灾害与环境研究所,成都 610041
A review of research on remote sensing for ground impervious surface percentage retrieval
Jiaqi ZUO1,2, Zegen WANG1, Jinhu BIAN2(), Ainong LI2, Guangbin LEI2, Zhengjian ZHANG2
1. School of Civil Engineering and Architecture, Southwest Petroleum University, Chengdu 610500, China
2. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
全文: PDF(2146 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

城市化造成的城市扩张给社会和生态环境带来诸多问题,监测城市变化是解决这一系列问题的重要切入点。不透水面数据作为表征城市扩张的重要指标已成为城市化研究的热点。不透水面数据获取及其时间序列变化分析是现阶段研究的核心。相比于早期基于平面地图的不透水面提取,遥感因其能够连续、快速、大范围对地观测而被广泛应用于不透水面的研究。多源数据融合和多种反演方法的提出使不透水面的遥感反演取得不断进步,研究的重心也逐渐由不透水面分类制图转移到亚像元不透水面比例的定量反演。本文从单时相和时间序列2个角度对不透水面比例遥感反演方法进行总结,详细分析了各种方法的优势和不足,并简述和对比了常用精度验证方法; 最后总结了现阶段不透水面比例遥感反演方法中存在的问题并提出了解决思路,展望了未来的发展方向。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
左家旗
王泽根
边金虎
李爱农
雷光斌
张正健
关键词 不透水面比例定量遥感反演时间序列城市化    
Abstract

Urban expansion caused by urbanization brings many problems to the social and ecological environment. Monitoring urban change is an entry point to solve these problems. As an important indicator of urban expansion, the impervious surface has become a hotspot of research. The acquisition of impervious surface data and its time series variation analysis are the core of the current study. Compared with early planar map-based impervious surface extraction, remote sensing has been widely used in impervious surface research due to its continuous, rapid and extensive observation of the ground. Multi-source data fusion and multiple retrieval method make constant progress in remote sensing-based retrieval of ground impervious surface percentage, and the focus of the study is gradually shifted from the classification map of impervious surface to the quantitative retrieval of impervious surface percentage. In this paper, the authors summarized the methods of remote sensing retrieval of sub-pixel impervious surface percentage from the perspectives of single period and time series, analyzed the advantages and disadvantages of the retrieval methods in detail, and briefly described and compared the common precision validation method. Finally, the authors summarized the problems existing in the current remote sensing retrieval methods, proposed the corresponding solutions, and pointed out the trend of development in the future.

Key wordsimpervious surface percentage    quantitative remote sensing retrieval    time series    urbanization
收稿日期: 2018-06-14      出版日期: 2019-08-30
:  TP79  
基金资助:国家自然科学基金重点项目“山地典型生态参量遥感反演建模及其时空表征能力研究”(41631180);中国科学院战略性先导专项子课题“一带一路重要经济廊道生态环境遥感监测与综合评估”(XDA19030303);国家重点研发计划子课题“基于多源数据融合的生态系统评估技术及其应用研究”(2016YFC0600201-06);中国科学院水利部成都山地灾害与环境研究所“一三五”重要方向性项目“南亚地缘合作关键资源环境变化过程与空间信息服务”(SDS-135-1708-06);中国科学院“西部之光”青年学者项目“山地国产HJ-1 A/B光学卫星影像时相自适应融合方法及其应用”共同资助
通讯作者: 边金虎
作者简介: 左家旗(1995-),男,硕士研究生,主要从事山地环境遥感方面的研究。Email: 123354087@qq.com.。
引用本文:   
左家旗, 王泽根, 边金虎, 李爱农, 雷光斌, 张正健. 地表不透水面比例遥感反演研究综述[J]. 国土资源遥感, 2019, 31(3): 20-28.
Jiaqi ZUO, Zegen WANG, Jinhu BIAN, Ainong LI, Guangbin LEI, Zhengjian ZHANG. A review of research on remote sensing for ground impervious surface percentage retrieval. Remote Sensing for Land & Resources, 2019, 31(3): 20-28.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.03.03      或      https://www.gtzyyg.com/CN/Y2019/V31/I3/20
Fig.1  MNF变换前3个波段的特征分布(改编自程熙等[10])
模型 On b1-7 Off b1-7 On TC Off TC DEM Light Slope AE/% RE/% R
CART1 13.5 0.41 0.84
CART2 13.6 0.42 0.84
CART3 12.7 0.39 0.86
CART4 12.8 0.39 0.86
CART5 13.6 0.41 0.84
CART6 15.2 0.46 0.81
Tab.1  各CART模型和相应输入变量[36]
模型 模型机理 必要参数 模型优点 区域 反演精度
决策树[36] 一个二分递归的树结构模型。算法根据训练数据产生的规则将输入样本集分成多类或连续的目标变量,由每个规则定义多变量线性回归模型建立的条件 叶节点所需最小样本数、树的最大深度 不需输入数据满足统计分布要求,将输入变量和目标变量的关系简化为多元变量的线性关系 北京市 AE=12.7%
RE=0.39
R=0.86
SVM[42] 基于统计学习理论和结构风险最小原理的二分类模型,其基本思想是求解能够正确划分训练数据集且几何间隔最大的分离超平面 核函数类型、核参数、惩罚因子 具有较好的泛化能力,对较少的训练样本和高空间维度的输入数据具有较强的鲁棒性 柏林市 MAE=12.4%
R2=0.52
MLP[43] 包含输入层、输出层和隐藏层的网络,整个网络是通过一个调整节点间互连权重强度的迭代学习过程来建立预测模型 网络架构、学习算法、训练迭代的次数 能够逼近任意的非线性函数,可以处理系统内难以解析的规律性,学习收敛速度快 印第安纳州波利斯市 RMSE=12.3%
R2=0.77
RF[14] 改良版的袋装回归树。其每一次分裂生长过程中对输入变量的选择都是随机的,且在分裂过程中允许输入其他变量。算法将对节点上的变量和输入变量进行比较,选择影响最大的变量进行分裂生长 训练样本的大小、树的棵数、每个节点选取的随机变量个数 泛化误差有限,不会因为树木棵数的增大而出现过拟合的情况 武汉市 总体精度为
97.06%
Tab.2  不透水面机器学习反演模型对比
Fig.2  Logistic函数模拟不透水面变化(改编自Song等[48])
[1] Department of Economic and Social Affairs,United Nations . World Urbanization Prospects:The 2007 Revision.Highlights[R]. New York:United Nations, 2008.
[2] Nita A . United nations department of economic and social affairs [C]//South Sudan Northeast African Studies, 2010.
[3] Arnold C L, Gibbons C J . Impervious surface coverage:The emergence of a key environmental indicator[J]. Journal of the American Planning Association, 1996,62(2):243-258.
[4] Pang W T, Fok H S, Iz H B . Mapping impervious surface areas from GIS planimetric data[J]. Survey Review, 2008,40(308):108-115.
[5] Wu J, Thompson J . Quantifying impervious surface changes using time series planimetric data from 1940 to 2011 in four central Iowa cities,U.S.A[J]. Landscape and Urban Planning, 2013,120:34-47.
[6] 杨可明, 周玉洁, 齐建伟 , 等. 城市不透水面及地表温度的遥感估算[J]. 国土资源遥感, 2014,26(2):134-139.doi: 10.6046/gtzyyg.2014.02.22.
doi: 10.6046/gtzyyg.2014.02.22
Yang K M, Zhou Y J, Qi J W , et al. Remote sensing estimating of urban impervious surface area and land surface temperature[J]. Remote Sensing for Land and Resources, 2014,26(2):134-139.doi: 10.6046/gtzyyg.2014.02.22.
[7] 张晓萍, 吕颖, 张华国 , 等. 1990―2011年舟山群岛不透水面动态遥感分析[J]. 国土资源遥感, 2018,30(2):178-185.doi: 10.6046/gtzyyg.2018.02.24.
Zhang X P, Lyu Y, Zhang H G , et al. Remote sensing analysis of impervious surface changes in Zhoushan Islands during 1990—2011[J]. Remote Sensing for Land and Resources, 2018,30(2):178-185.doi: 10.6046/gtzyyg.2018.02.24.
[8] Xian G, Crane M . Assessments of urban growth in the Tampa Bay watershed using remote sensing data[J]. Remote Sensing of Environment, 2005,97(2):203-215.
[9] Patel N, Mukherjee R . Extraction of impervious features from spectral indices using artificial neural network[J]. Arabian Journal of Geosciences, 2015,8(6):3729-3741.
[10] 程熙, 沈占锋, 骆剑承 , 等. 利用混合光谱分解与SVM估算不透水面覆盖率[J]. 遥感学报, 2011,15(6):1235-1241.
doi: 10.11834/jrs.20110335
Cheng X, Shen Z F, Luo J C , et al. Estimating impervious surface base on comparison of spectral mixture analysis and support vector machine methods[J]. Journal of Remote Sensing, 2011,15(6):1228-1234.
[11] 高志宏, 张路, 李新延 , 等. 城市土地利用变化的不透水面覆盖度检测方法[J]. 遥感学报, 2010,14(3):600-606.
doi: 10.11834/jrs.20100316
Gao Z H, Zhang L, Li X Y , et al. Detection and analysis of urban land use changes through multi-temporal impervious surface mapping[J]. Journal of Remote Sensing, 2010,14(3):600-606.
[12] 陈征, 胡德勇, 曾文华 , 等. 基于TM图像和夜间灯光数据的区域城镇扩张监测——以浙江省为例[J]. 国土资源遥感, 2014,26(1):83-89.doi: 10.6046/gtzyyg.2014.01.15.
doi: 10.6046/gtzyyg.2014.01.15
Chen Z, Hu D Y, Zeng W H , et al. TM image and nighttime light data to monitoring regional urban expansion:A case study of Zhejiang Province[J]. Remote Sensing for Land and Resources, 2014,26(1):83-89.doi: 10.6046/gtzyyg.2014.01.15.
[13] Yang L, Huang C, Homer C G , et al. An approach for mapping large-area impervious surfaces:Synergistic use of Landsat 7 ETM+ and high spatial resolution imagery[J]. Canadian Journal of Remote Sensing, 2003,29(2):230-240.
[14] 邵振峰, 张源, 周伟琪 , 等. 基于测绘卫星影像的城市不透水面提取[J]. 地理空间信息, 2016,14(7):1-5.
Shao Z F, Zhang Y, Zhou W Q , et al. Extraction of urban impervious surface based on high resolution remote sensing image[J]. Geospatial Information, 2016,14(7):1-5.
[15] Ridd M K . Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing:Comparative anatomy for cities?[J]. International Journal of Remote Sensing, 1995,16(12):2165-2185.
[16] 赵英时 . 遥感应用分析原理与方法[M].科学出版社, 2003: 315-317.
Zhao Y S. Principle and Method of Remote Sensing Application Analysis[M]. Beijing: Science Press, 2003: 315-317.
[17] Altmann Y, Halimi A, Dobigeon N , et al. Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery[J]. IEEE Transactions on Image Processing, 2012,21(6):3017-3025.
[18] Fan F, Deng Y . Enhancing endmember selection in multiple endmember spectral mixture analysis (MESMA) for urban impervious surface area mapping using spectral angle and spectral distance parameters[J]. International Journal of Applied Earth Observation and Geoinformation, 2014,33(12):290-301.
[19] Franke J, Roberts D A, Halligan K , et al. Hierarchical multiple endmember spectral mixture analysis (MESMA) of hyperspectral imagery for urban environments[J]. Remote Sensing of Environment, 2009,113(8):1712-1723.
[20] Powell R L, Roberts D A, Dennison P E , et al. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis:Manaus,Brazil[J]. Remote Sensing of Environment, 2007,106(2):253-267.
[21] Wu C . Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery[J]. Remote Sensing of Environment, 2004,93(4):480-492.
[22] 唐菲, 徐涵秋 . 高光谱与多光谱遥感影像反演地表不透水面的对比——以Hyperion和TM/ETM+为例[J]. 光谱学与光谱分析, 2014,34(4):1075-1080.
Tang F, Xu H Q . Comparison of performances in retrieving impervious surface between hyperspectral (Hyperion) and multis-pectral (TM/ETM+) images[J]. Spectroscopy and Spectral Analysis, 2014,34(4):1075-1080.
[23] Wu C S, Murray A T . Estimating impervious surface distribution by spectral mixture analysis[J]. Remote Sensing of Environment, 2003,84(4):493-505.
[24] Bian J, Li A, Zhang Z , et al. Monitoring fractional green vegetation cover dynamics over a seasonally inundated alpine wetland using dense time series HJ-1A/B constellation images and an adaptive endmember selection LSMM model[J]. Remote Sensing of Environment, 2017,197:98-114.
[25] 邓蕾, 赵小锋, 王慧娜 , 等. 城市混合像元分解中土壤与不透水面纯像元选取方法的对比研究——以厦门为例[J]. 遥感技术与应用, 2013,28(6):1039-1045.
Deng L, Zhao X F, Wang H N , et al. Pure pixel collection methods for soil and imprevious surface in urban spectral mixture comparative analysis[J]. Remote Sensing Technology and Application, 2013,28(6):1039-1045.
[26] Bachmann C M, Ainsworth T L, Fusina R A . Improved manifold coordinate representations of large-scale hyperspectral scenes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(10):2786-2803.
[27] Broadwater J, Banerjee A . A generalized kernel for areal and intimate mixtures [C]//Hyperspectral Image and Signal Processing:Evolution in Remote Sensing.IEEE, 2010: 1-4.
[28] 李慧, 张金区, 曹阳 , 等. 端元可变非线性混合像元分解模型[J]. 测绘学报, 2016,45(1):80-86.
Li H, Zhang J Q, Cao Y , et al. Nonlinear spectral unmixing for optimizing per-pixel endmember sets[J]. Acta Geodaetica et Cartographica Sinica, 2016,45(1):80-86.
[29] Heremans S, Orshoven J V . Machine learning methods for sub-pixel land-cover classification in the spatially heterogeneous region of Flanders(Belgium):A multi-criteria comparison[J]. International Journal of Remote Sensing, 2015,36(11):2934-2962.
[30] Kawamura M . Relation between social and environmental conditions in Colombo Sri Lanka and the urban index estimated by satellite remote sensing data [C]//Proceeding Conference of the Japan Society of Civil Engineers, 1996.
[31] Zha Y, Gao J, Ni S . Use of normalized difference built-up index in automatically mapping urban areas from TM imagery[J]. International Journal of Remote Sensing, 2003,24(3):583-594.
[32] Xu H Q . Analysis of impervious surface and its impact on urban heat environment using the normalized difference impervious surface index (NDISI)[J]. Photogrammetric Engineering and Remote Sensing, 2010,76(5):557-565.
[33] Lu D, Tian H, Zhou G , et al. Regional mapping of human settlements in southeastern China with multisensor remotely sensed data[J]. Remote Sensing of Environment, 2008,112(9):3668-3679.
[34] Zhang Q, Schaaf C, Seto K C . The vegetation adjusted NTL urban index:A new approach to reduce saturation and increase variation in nighttime luminosity[J]. Remote Sensing of Environment, 2013,129:32-41.
[35] Guo W, Lu D, Kuang W . Improving fractional impervious surface mapping performance through combination of DMSP-OLS and MODIS NDVI data[J]. Remote Sensing, 2017,9(4):375.
[36] Hu D Y, Chen S, Qiao K , et al. Integrating CART algorithm and multi-source remote sensing data to estimate sub-pixel impervious surface coverage:A case study from Beijing Municipality,China[J]. Chinese Geographical Science, 2017,27(4):614-625.
[37] Li C, Wang J, Wang L , et al. Comparison of classification algorithms and training sample sizes in urban land classification with Landsat thematic mapper imagery[J]. Remote Sensing, 2014,6(2):964-983.
[38] Sexton J O, Song X P, Huang C , et al. Urban growth of the Washington,D.C.-Baltimore,MD metropolitan region from 1984 to 2010 by annual,Landsat-based estimates of impervious cover[J]. Remote Sensing of Environment, 2013,129:42-53.
[39] 孙攀, 董玉森, 陈伟涛 , 等. 高分二号卫星影像融合及质量评价[J]. 国土资源遥感, 2016,28(4):108-113.doi: 10.6046/gtzyyg.2016.04.17.
doi: 10.6046/gtzyyg.2016.04.17
Sun P, Dong Y S, Chen W T , et al. Research on fusion of GF-2 imagery and quality evaluation[J]. Remote Sensing for Land and Resources, 2016,28(4):108-113.doi: 10.6046/gtzyyg.2016.04.17.
[40] 刘会芬, 杨英宝, 于双 , 等. 遥感图像不同融合方法的适应性评价——以ZY-3和Landsat8图像为例[J]. 国土资源遥感, 2014,26(4):63-70.doi: 10.6046/gtzyyg.2014.04.11.
doi: 10.6046/gtzyyg.2014.04.11
Liu H F, Yang Y B, Yu S , et al. Adaptability evaluation of different fusion methods on ZY-3 and Landsat8 images[J]. Remote Sensing for Land and Resources, 2014,26(4):63-70.doi: 10.6046/gtzyyg.2014.04.11.
[41] Schug F, Okujeni A, Hauer J , et al. Mapping patterns of urban development in Ouagadougou,Burkina Faso,using machine learning regression modeling with bi-seasonal Landsat time series[J]. Remote Sensing of Environment, 2018,210:217-228.
[42] Okujeni A , Linden S V D,Hostert P.Extending the vegetation-impervious-soil model using simulated EnMAP data and machine learning[J]. Remote Sensing of Environment, 2015,158(10):69-80.
[43] Weng Q, Hu X . Medium spatial resolution satellite imagery for estimating and mapping urban impervious surfaces using LSMA and ANN[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008,46(8):2397-2406.
[44] Henits L, Mucsi L, Liska C M . Monitoring the changes in impervious surface ratio and urban heat island intensity between 1987 and 2011 in Szeged,Hungary[J]. Environmental Monitoring and Assessment, 2017,189(2):86.
[45] Zhang X P, Pan D L, Chen J Y , et al. Using long time series of Landsat data to monitor impervious surface dynamics:A case study in the Zhoushan Islands[J]. Journal of Applied Remote Sensing, 2013,7(1):073515.
[46] Li M, Zang S, Wu C , et al. Spatial and temporal variation of the urban impervious surface and its driving forces in the central city of Harbin[J]. Journal of Geographical Sciences, 2018,28(3):323-336.
[47] Sexton J O, Noojipady P, Anand A , et al. A model for the propagation of uncertainty from continuous estimates of tree cover to categorical forest cover and change[J]. Remote Sensing of Environment, 2015,156:418-425.
[48] Song X P, Sexton J O, Huang C , et al. Characterizing the magnitude,timing and duration of urban growth from time series of Landsat-based estimates of impervious cover[J]. Remote Sensing of Environment, 2016,175:1-13.
[49] Wang P, Huang C , Eric B D C.Mapping 2000—2010 impervious surface change in India using global land survey Landsat data[J]. Remote Sensing, 2017,9(4):366.
[50] 王春林, 孙金彦, 周绍光 , 等. 影像辅助下LiDAR数据建筑物轮廓信息提取[J]. 国土资源遥感, 2017,29(1):78-85.doi: 10.6046/gtzyyg.2017.01.12.
Wang C L, Sun J Y, Zhou S G , et al. Building boundary extraction using LiDAR data and images[J]. Remote Sensing for Land and Resources, 2017,29(1):78-85.doi: 10.6046/gtzyyg.2017.01.12.
[1] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[2] 宋奇, 冯春晖, 马自强, 王楠, 纪文君, 彭杰. 基于1990—2019年Landsat影像的干旱区绿洲土地利用变化与模拟[J]. 自然资源遥感, 2022, 34(1): 198-209.
[3] 孟丹, 刘玲童, 宫辉力, 李小娟, 蒋博武. 京杭大运河沿线地区城市化与生态环境耦合协调关系研究[J]. 自然资源遥感, 2021, 33(4): 162-172.
[4] 钞振华, 车明亮, 侯胜芳. 基于时间序列遥感数据植被物候信息提取软件发展现状[J]. 自然资源遥感, 2021, 33(4): 19-25.
[5] 赖佩玉, 黄静, 韩旭军, 马明国. 基于GEE的三峡蓄水对重庆地表水和植被影响研究[J]. 自然资源遥感, 2021, 33(4): 227-234.
[6] 王小龙, 闫浩文, 周亮, 张黎明, 党雪薇. 利用SVM分类Landsat影像的朝鲜主要城市建设用地时空特征分析[J]. 国土资源遥感, 2020, 32(4): 163-171.
[7] 王德军, 姜琦刚, 李远华, 关海涛, 赵鹏飞, 习靖. 基于Sentinel-2A/B时序数据与随机森林算法的农耕区土地利用分类[J]. 国土资源遥感, 2020, 32(4): 236-243.
[8] 孙超, 陈振杰, 王贝贝. 基于SAR时间序列的建设用地扩展监测——以常州市新北区为例[J]. 国土资源遥感, 2020, 32(4): 154-162.
[9] 王碧晴, 韩文泉, 许驰. 基于图像分割和NDVI时间序列曲线分类模型的冬小麦种植区域识别与提取[J]. 国土资源遥感, 2020, 32(2): 219-225.
[10] 杨玉婷, 陈海兰, 左家旗. 1990—2017年间杭州市不透水面比例遥感监测[J]. 国土资源遥感, 2020, 32(2): 241-250.
[11] 朱爽, 张锦水. 时间序列低分影像修正中分遥感冬小麦分布[J]. 国土资源遥感, 2020, 32(1): 19-26.
[12] 吴迪, 陈健, 石满, 覃帮勇, 李盛阳. 基于Savitzky-Golay滤波算法的FY-2F地表温度产品时间序列重建[J]. 国土资源遥感, 2019, 31(2): 59-65.
[13] 曹西凤, 孙林, 赵子飞, 韩晓峰, 颜明捷. MODIS遥感产品在三江源地区草产量估测中的应用[J]. 国土资源遥感, 2018, 30(4): 115-124.
[14] 徐彬仁, 魏瑗瑗. 基于随机森林算法对青藏高原TRMM降水数据进行空间统计降尺度研究[J]. 国土资源遥感, 2018, 30(3): 181-188.
[15] 刘远, 周买春. MODIS,CYCLOPES和GLASS 3种LAI产品在韩江流域的对比[J]. 国土资源遥感, 2018, 30(1): 14-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发