Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (1): 146-153    DOI: 10.6046/zrzyyg.2022492
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于Ameriflux通量观测数据的Hi-GLASS潜热通量产品验证
范佳慧1(), 姚云军1(), 杨军明1, 于瑞阳1, 刘露1, 张学艺1,2, 谢紫菁1, 宁静1
1.北京师范大学遥感科学国家重点实验室,地理学与遥感科学学院,北京 100875
2.中国气象局旱区特色农业气象灾害监测预警与风险管理重点实验室,银川 750002
Validation of Hi-GLASS products for latent heat flux based on Ameriflux observation data
FAN Jiahui1(), YAO Yunjun1(), YANG Junming1, YU Ruiyang1, LIU Lu1, ZHANG Xueyi1,2, XIE Zijing1, NING Jing1
1. State Key Laboratory of Remote Sensing Science, School of Geography, Beijing Normal University, Beijing 100875, China
2. Key Laboratory for Meteorological Disaster Monitoring and Early Warning and Risk Management of Characteristic Agriculture in Arid Regions,CMA,Yinchuan 750002,China
全文: PDF(13413 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

潜热通量产品的验证与分析对于研究气候变化及能量循环具有重要意义。全球陆表高分辨率蒸散产品(high resolution global lAnd surface evapotranspiration product,Hi-GLASS ET)融合了5种传统蒸散算法,能够生产出较高精度的陆表潜热通量产品,但目前没有针对此产品的验证研究。利用Ameriflux通量观测站点的潜热通量观测值与相应的Hi-GLASS陆表潜热通量产品估算值进行对比,获取多组有效验证数据。验证结果显示,所选站点实际观测值与产品估算值的决定系数(R2)为0.6,均方根误差(RMSE)为34.4 W/m2,平均偏差(Bias)为-13.4 W/m2,克林-古普塔效率(Kling-Gupta efficiency,KGE)为0.49,Hi-GLASS 潜热通量产品具有较高的精度,算法的拟合结果较好; 此外,空间分布也表明Hi-GLASS陆表潜热通量产品符合正常的自然规律。由于数据获取的局限性,仅采用了美国地区18个站点数据对产品进行验证,在其他地区仍需进一步验证。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范佳慧
姚云军
杨军明
于瑞阳
刘露
张学艺
谢紫菁
宁静
关键词 陆表潜热通量Ameriflux通量站点Hi-GLASS陆表潜热通量产品精度验证    
Abstract

The validation and analysis of latent heat flux products are critical for research on climate change and energy circulation. High-resolution global land surface satellite evapotranspiration (Hi-GLASS ET) products, which integrate five traditional evapotranspiration algorithms, can produce high-precision products for land surface latent heat flux. However, these products are yet to be validated. This study obtained multiple sets of valid validation data by comparing the latent heat flux observed values from Ameriflux flux observation sites with the corresponding estimated values of Hi-GLASS land surface latent heat flux products. The validation results yielded a squared correlation coefficient (R2) of 0.6, a root mean square error (RMSE) of 34.4 W/m2, an average bias of -13.4 W/m2, and Kling-Gupta efficiency (KGE) of 0.49. These suggest that Hi-GLASS latent heat flux products boast high precision and that their algorithms enjoy satisfactory fitting results. In addition, spatial distributions imply that Hi-GLASS latent heat flux products conform to normal natural laws. Due to data acquisition limitations, the validation of this study was conducted based on data from only 18 sites in the U.S., and further validation using data from other areas is required.

Key wordsland surface latent heat flux    Ameriflux sites    Hi-GLASS products    precision validation
收稿日期: 2022-12-26      出版日期: 2024-03-13
ZTFLH:  TP79  
基金资助:国家自然科学基金重大项目“地表异常遥感探测与即时诊断方法”(42192580);第一课题“地表异常遥感响应特征与语义表征”(42192581);国家自然科学基金面上项目“基于多星多尺度遥感的地表潜热通量智能化融合算法研究”(42171310)
通讯作者: 姚云军(1980-),男,博士,教授,主要从事遥感蒸散发算法研究。Email: boyyunjun@163.com
作者简介: 范佳慧(2000-),女,硕士研究生,主要从事遥感蒸散估算研究。Email: fanjiahui1012@163.com
引用本文:   
范佳慧, 姚云军, 杨军明, 于瑞阳, 刘露, 张学艺, 谢紫菁, 宁静. 基于Ameriflux通量观测数据的Hi-GLASS潜热通量产品验证[J]. 自然资源遥感, 2024, 36(1): 146-153.
FAN Jiahui, YAO Yunjun, YANG Junming, YU Ruiyang, LIU Lu, ZHANG Xueyi, XIE Zijing, NING Jing. Validation of Hi-GLASS products for latent heat flux based on Ameriflux observation data. Remote Sensing for Natural Resources, 2024, 36(1): 146-153.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022492      或      https://www.gtzyyg.com/CN/Y2024/V36/I1/146
Fig.1  Hi-GLASS ET产品生产流程[23]
站点名称 纬度/(°) 经度/(°) 植被覆盖类型
US-CRT 41.628 5 -83.347 1 CRO
US-Tw2 38.096 9 -121.636 5 CRO
US-Tw3 38.115 2 -121.646 9 CRO
US-Twt 38.108 7 -121.6531 CRO
US-GLE 41.366 5 -106.239 9 ENF
US-Me2 44.452 6 -121.558 9 ENF
US-NR1 40.032 9 -105.546 4 ENF
US-Prr 65.123 7 -147.487 6 ENF
US-MMS 39.323 2 -86.413 1 DBF
US-WCr 45.805 9 -90.079 9 DBF
US-Oho 41.554 5 -83.843 8 DBF
US-SRG 31.789 4 -110.827 7 GRA
US-Var 38.413 3 -120.950 8 GRA
US-Wkg 31.736 5 -109.941 9 GRA
US-SRC 31.908 3 -110.839 5 OSH
US-Whs 31.743 8 -110.052 2 OSH
US-SRM 31.821 4 -110.866 1 WSA
US-Ton 38.430 9 -120.966 0 WSA
Tab.1  通量站点空间分布信息
Fig.2  各站点精度验证散点图
Fig.3  总体精度验证散点图
Fig.4  2014年Hi-GLASS陆表潜热通量产品对比
Fig.5  2014年Hi-GLASS潜热通量产品美国地区空间分布
[1] Monteith J L. Evaporation and environment[J]. Symposia of the Society for Experimental Biology, 1965, 19:205-234.
pmid: 5321565
[2] Ppriestley C H B, Taylor R J. On the assessment of surface heat flux and evaporation using large-scale parameters[J]. Monthly Weather Review, 1972, 100(2):81-92.
doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
[3] Kalma J D, McVicar T R, McCabe M F. Estimating land surface evaporation:A review of methods using remotely sensed surface temperature data[J]. Surveys in Geophysics, 2008, 29(4):421-469.
doi: 10.1007/s10712-008-9037-z
[4] Liang S. Review on estimation of land surface radiation and energy budgets from ground measurement,remote sensing and model simulations[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(3):225-240.
doi: 10.1109/JSTARS.4609443
[5] Wang K C, Dickinson R E. A review of global terrestrial evapotranspiration:Observation,modeling,climatology,and climatic variability[J]. Reviews of Geophysics, 2012, 50(2):1-54
[6] 李小文, 王锦地, 胡宝新, 等. 先验知识在遥感反演中的作用[J]. 中国科学(地球科学), 1998, 28(1):67-72.
Li X W, Wang J D, Hu B X, et al. The role of prior knowledge in remote sensing inversion[J]. Scientia Sinica(Terrae), 1998, 28(1):67-72.
[7] 徐冠华. 论热红外遥感中的基础研究[J]. 中国科学(技术科学), 2000, 30(s1):1-5.
Xu G H. On the basic research in thermal infrared remote sensing[J]. Sciertia Sinica Technologic, 2000, 30(s1):1-5.
[8] 张仁华, 孙晓敏, 朱治林, 等. 以微分热惯量为基础的地表蒸发全遥感信息模型及在甘肃沙坡头地区的验证[J]. 中国科学(地球科学), 2002, 32(12):1041-1050.
Zhang R H, Sun X M, Zhu Z L, et al. Remote sensing information model of surface evaporation based on differential thermal inertia and its verification in Shapotou area of Gansu Province[J]. Science in China, 2002, 32(12):1041-1050.
[9] 刘绍民, 孙睿, 孙中平, 等. 基于互补相关原理的区域蒸散量估算模型比较[J]. 地理学报, 2004, 59(3):331-340.
Liu S M, Sun R, Sun Z P, et al. Comparison of different complementary relationship models for regional evapotranspiration estimation[J]. Acta Geographica Sinica, 2004, 59(3):331-340.
doi: 10.11821/xb200403002
[10] Mu Q Z, Heinsch A F, Zhao M S, et al. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data[J]. Remote Sensing of Environment, 2007, 111(4):519-536.
doi: 10.1016/j.rse.2007.04.015
[11] Mu Q Z, Zhao M S, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011, 115(8):1781-1800.
doi: 10.1016/j.rse.2011.02.019
[12] 范德芹, 赵学胜, 朱文泉, 等. 植物物候遥感监测精度影响因素研究综述[J]. 地理科学进展, 2016, 35(3):304-319.
doi: 10.18306/dlkxjz.2016.03.005
Fan D Q, Zhao X S, Zhu W Q, et al. Review of influencing factors of accuracy of plant phenology monitoring based on remote sensing data[J]. Progress in Geography, 2016, 35(3):304-319.
doi: 10.18306/dlkxjz.2016.03.005
[13] Klaes K D, Schmetz J. The EUMETSAT Polar System:Status and first results[J]. Atmospheric and Environmental Remote Sensing Data Processing and Utilization III:Readiness for GEOSS, 2007, 6684:84-90.
[14] Chen Y, Xia J Z, Liang S L, et al. Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China[J]. Remote Sensing of Environment, 2014, 140:279-293.
doi: 10.1016/j.rse.2013.08.045
[15] Hu G C, Jia L, Menenti M. Comparison of MOD16 and LSA-SAF MSG evapotranspiration products over Europe for 2011[J]. Remote Sensing of Environment, 2015, 156:510-526.
doi: 10.1016/j.rse.2014.10.017
[16] Kumar S V, Peters-Lidard C D, Tian Y, et al. Land information system:An interoperable framework for high resolution land surface modeling[J]. Environmental Modelling and Software, 2006, 21(10):1402-1415.
doi: 10.1016/j.envsoft.2005.07.004
[17] Anderson M C, Norman J M, Diak G R, et al. A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing[J]. Remote Sensing of Environment, 1997, 60(2):195-216.
doi: 10.1016/S0034-4257(96)00215-5
[18] Cleugh H A, Leuning R, Mu Q, et al. Regional evaporation estimates from flux tower and MODIS satellite data[J]. Remote Sensing of Environment, 2007, 106(3):285-304.
doi: 10.1016/j.rse.2006.07.007
[19] Wang K C, Liang S L. An improved method for estimating global evapotranspiration based on satellite determination of surface net radiation,vegetation index,temperature,and soil moisture[C]// 2008 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2008:III-875-878.
[20] Martin J, Markus R, Philippe C, et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply[J]. Nature, 2010, 467(7318):951-954.
doi: 10.1038/nature09396
[21] Yao Y J, Liang S L, Cheng J, et al. MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley-Taylor algorithm[J]. Agricultural and Forest Meteorology, 2013,171-172:187-202.
[22] Kim H W, Hwang K, Mu Q Z, et al. Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia[J]. KSCE Journal of Civil Engineering, 2012, 16(2):229-238.
doi: 10.1007/s12205-012-0006-1
[23] Yao Y J, Liang S L, Li X L, et al. Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method[J]. Journal of Hydrology, 2017, 553:508-526.
doi: 10.1016/j.jhydrol.2017.08.013
[24] Zhou H M, Liang S L, He Tao, et al. Evaluating the spatial representativeness of the MODerate resolution image spectroradiometer albedo product (MCD43) at AmeriFlux sites[J]. Remote Sensing, 2019, 11(5):547.
doi: 10.3390/rs11050547
[25] Zhang Z J, Zhao L, Lin A W. Evaluating the performance of Sentinel-3A OLCI land products for gross primary productivity estimation using AmeriFlux data[J]. Remote Sensing, 2020, 12(12):1927.
doi: 10.3390/rs12121927
[26] Gupta H V, Kling H, Yilmaz K K, et al. Decomposition of the mean squared error and NSE performance criteria:Implications for improving hydrological modelling[J]. Journal of Hydrology, 2009, 377(1):80-91.
doi: 10.1016/j.jhydrol.2009.08.003
[1] 李星佑, 张飞, 王筝. 土壤盐渍化遥感监测模型构建方法现状与发展趋势[J]. 自然资源遥感, 2022, 34(4): 11-21.
[2] 于冰, 谭青雪, 刘国祥, 刘福臻, 周志伟, 何智勇. 高分辨率TerraSAR-X时序差分干涉沉降监测及精度验证[J]. 自然资源遥感, 2021, 33(4): 26-33.
[3] 肖东升, 杨松. 基于夜间灯光数据的人口空间分布研究综述[J]. 国土资源遥感, 2019, 31(3): 10-19.
[4] 陆坤, 孟庆岩, 孙云晓, 孙震辉, 张琳琳. 基于GF-2卫星数据的孕穗期小麦叶面积指数反演——以河北省廊坊市为例[J]. 国土资源遥感, 2018, 30(1): 196-202.
[5] 薛武, 马永政, 赵玲, 莫德林. 无人机农村宅基地高精度确权应用[J]. 国土资源遥感, 2017, 29(3): 124-127.
[6] 江威, 何国金, 龙腾飞, 尹然宇, 宋小璐, 袁益琴, 凌赛广. 基于北斗和GPS的高分二号全色影像正射精度验证与分析[J]. 国土资源遥感, 2017, 29(3): 211-216.
[7] 高懋芳, 覃志豪. 中国MODIS地表温度产品验证[J]. 国土资源遥感, 2006, 18(3): 15-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发