Please wait a minute...
 
自然资源遥感  2021, Vol. 33 Issue (4): 26-33    DOI: 10.6046/zrzyyg.2020379
  地面沉降监测专栏 本期目录 | 过刊浏览 | 高级检索 |
高分辨率TerraSAR-X时序差分干涉沉降监测及精度验证
于冰1,2,3,4(), 谭青雪1, 刘国祥5, 刘福臻1, 周志伟4, 何智勇1
1.西南石油大学土木工程与测绘学院,成都 610500
2.西南石油大学油气空间信息工程研究所, 成都 610500
3.西南石油大学油气藏地质及开发工程国家重点实验室,成都 610500
4.中国科学院精密测量科学与技术创新研究院,大地测量与地球动力学国家重点实验室, 武汉 430077
5.西南交通大学地球科学与环境工程学院,成都 611756
Land subsidence monitoring based on differential interferometry using time series of high-resolution TerraSAR-X images and monitoring precision verification
YU Bing1,2,3,4(), TAN Qingxue1, LIU Guoxiang5, LIU Fuzhen1, ZHOU Zhiwei4, HE Zhiyong1
1. School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, China
2. Institute of Petroleum and Natural Gas Spatial Information Engineering, Southwest Petroleum University, Chengdu 610500, China
3. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
4. State Key Laboratory of Geodesy and Earth's Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China
5. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
全文: PDF(4974 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

城市地面沉降属于缓慢性地质灾害,其对社会经济和人类生活具有持续性负面影响,对城市沉降进行广域高效监测具有重要现实意义。选取天津市为研究区域,以2009年4月7日—2010年12月14日获取的34幅高分辨率TerraSAR-X SAR影像为数据源,采用基于相干点目标分析(interferometric point target analysis, IPTA)的时序差分干涉处理方法进行沉降监测,使用精密水准数据进行精度验证,并提出一种基于最小二乘拟合的沉降时间序列验证方法,最后基于验证后的结果进行沉降分析和解释。与水准数据对比表明,IPTA解算沉降速率、时间序列最小二乘拟合沉降速率的均方根误差分别为3.15 mm/a和-3.25 mm/a。对沉降结果进行分析表明,实验区总体沉降呈不均匀性,最大沉降速率为-128.41 mm/a,沉降时空分布与研究区地表覆盖类型及地下水开采相关。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于冰
谭青雪
刘国祥
刘福臻
周志伟
何智勇
关键词 TerraSAR-X时序差分干涉沉降监测与分析精度验证    
Abstract

Urban land subsidence is a kind of slowly developing geological disaster and has sustained negative impacts on the social economy and human life. Therefore, it is of great significance to carry out effective and wide-area urban subsidence monitoring. With 34 high-resolution TerraSAR-X SAR images obtained from April 07, 2009 to December 14, 2010 as data sources, the land subsidence in Tianjin City was monitored using the differential interferometry of time series based on interferometric point target analysis (IPTA) in this study. Then the monitoring precision was verified using the precise leveling data, and a verification method of subsidence time series based on least-squares fitting was adopted. Finally, subsidence analysis and interpretation were carried out based on the verification results. Compared to the leveling data, the root mean square errors of the subsidence rates obtained using IPTA and that using the least squares-fitting of time series were 3.15 mm/a and -3.25 mm/a, respectively. According to the analysis of subsidence results, the overall subsidence of the study area is significantly uneven, the maximum subsidence rate is -128.41 mm/a, and the spatial-temporal distribution of the land subsidence correlates highly with surface cover types and groundwater exploitation.

Key wordsTerraSAR-X    time series differential interferometry    land subsidence monitoring and analysis    precision verification
收稿日期: 2020-12-01      出版日期: 2021-12-23
ZTFLH:  P2  
基金资助:国家自然科学基金青年科学基金项目“基于卫星升降轨时序DInSAR的塔里木油田沉降监测及储层状态参数反演”(41801399);第65批中国博士后科学基金面上资助项目“我国西北典型特大油田InSAR沉降监测及储层参数反演”(2019M653476);四川省科技计划项目“星载多平台升降轨时序差分雷达干涉滑坡三维形变监测及预测”(2018JY0138);大地测量与地球动力学国家重点实验室开放基金项目“玛湖特大油田InSAR沉降监测及储存动力学参数反演”(SKLGED2020-5-1-E)
作者简介: 于 冰(1985-),男,博士,副教授,主要研究方向为合成孔径雷达干涉测量与形变监测、高分辨率遥感自然和人文环境监测。Email: rs_insar_bingyu@163.com
引用本文:   
于冰, 谭青雪, 刘国祥, 刘福臻, 周志伟, 何智勇. 高分辨率TerraSAR-X时序差分干涉沉降监测及精度验证[J]. 自然资源遥感, 2021, 33(4): 26-33.
YU Bing, TAN Qingxue, LIU Guoxiang, LIU Fuzhen, ZHOU Zhiwei, HE Zhiyong. Land subsidence monitoring based on differential interferometry using time series of high-resolution TerraSAR-X images and monitoring precision verification. Remote Sensing for Natural Resources, 2021, 33(4): 26-33.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2020379      或      https://www.gtzyyg.com/CN/Y2021/V33/I4/26
Fig.1  研究区域示意图

影像获取
日期
垂直基
线/m
时间基
线/d

影像获取
日期
垂直基
线/m
时间基
线/d
1 20090407 67.95 -220 18 20091124 46.37 11
2 20090418 -23.40 -209 19 20091205 126.49 22
3 20090429 13.05 -198 20 20091227 133.29 44
4 20090510 30.73 -187 21 20100129 -7.20 77
5 20090521 64.55 -176 22 20100220 -154.94 99
6 20090623 -75.82 -143 23 20100303 -151.00 110
7 20090704 -17.13 -132 24 20100314 -104.42 121
8 20090715 -33.04 -121 25 20100325 9.39 132
9 20090726 -112.48 -110 26 20100405 -93.11 143
10 20090806 137.93 -99 27 20100416 -126.12 154
11 20090828 -101.72 -77 28 20100427 -36.25 165
12 20090908 36.81 -66 29 20100621 18.66 220
13 20090919 -64.36 -55 30 20100702 -78.20 231
14 20091011 -38.69 -33 31 20100804 81.35 264
15 20091022 -65.56 -22 32 20100906 1.45 297
16 20091102 119.21 -11 33 20101111 -22.89 363
17 20091113 主影像 34 20101214 -92.45 396
Tab.1  干涉对及时空基线
Fig.2  IPTA数据处理流程
Fig.3  相干点沉降速率及水准点分布
Fig.4  水准点与相干点沉降结果对比
Fig.5  拟合沉降速率验证结果
Fig.6  沉降速率结果
Fig.7  AB及CD的沉降剖面
Fig.8  沉降时间序列
Fig.9  2个地区的沉降速率及相应的用地类型
Fig.10  3条高速公路沉降速率
[1] Solari L, Ciampalini A, Raspini F, et al. Combined use of C-and X-band SAR data for subsidence monitoring in an urban area[J]. Geosciences, 2017,7(21):1-17.
doi: 10.3390/geosciences7010001
[2] 于冰. 高分辨率相干散射体雷达干涉建模及形变信息提取方法[D]. 成都:西南交通大学, 2015.
Yu B. High resolution coherent scatterer Radar interferometric modeling and deformation information extraction method[D]. Chengdu:Southwest Jiaotong University, 2015.
[3] 段晓峰, 许学工, 王若柏. 天津沿海地区地面沉降及其影响因素[J]. 北京大学学报(自然科学版), 2014,50(6):1071-1076.
Duan X F, Xu X G, Wang R B. Land subsidence and its influencing factors in Tianjin coastal area[J]. Journal of Peking University(Natural Science Edition), 2014,50(6):1071-1076.
[4] 张洪涛. 城市地质工作——国家经济建设和社会发展的重要支撑(代序)[J]. 地质通报, 2003(8):549-550.
Zhang H T. Urban geological work:An important support for national economic construction and social development[J]. Geological Bulletin, 2003(8):549-550.
[5] 曹群, 陈蓓蓓, 宫辉力, 等. 基于SBAS和IPTA技术的京津冀地区地面沉降监测[J]. 南京大学学报(自然科学), 2019,55(3):381-391.
Cao Q, Chen B B, Gong H L, et al. Land subsidence monitoring in Beijing Tianjin Hebei region based on SBAS and IPTA technology[J]. Journal of Nanjing University(Natural Science), 2019,55(3):381-391.
[6] 董克刚, 周俊, 于强, 等. 天津市地面沉降的特征及其危害[J]. 地质灾害与环境保护, 2007(1):67-70.
Dong K G, Zhou J, Yu Q, et al. Characteristics and hazards of land subsidence in Tianjin[J]. Geological Hazards and Environmental Protection, 2007(1):67-70.
[7] 于海若, 宫辉力, 陈蓓蓓, 等. 京津冀地区地面沉降研究进展与思考[J]. 测绘科学, 2020,45(4):125-133,141.
Yu H R, Gong H L, Chen B B, et al. Land subsidence research progress and thinking in Beijing Tianji Hebei region[J]. Surveying and Mapping Science, 2020,45(4):125-133,141.
[8] 袁悦, 贾丽云, 张绪教, 等. 基于SBAS-InSAR技术的海口地区地面沉降监测及机理分析[J]. 地理与地理信息科学, 2020,36(5):56-64.
Yuan Y, Jia L Y, Zhang X J, et al. Land subsidence monitoring and mechanism analysis in Haikou area based on SBAS-InSAR technology[J]. Geography and Geographic Information Science, 2020,36(5):56-64.
[9] 廖明生, 卢丽君, 王艳, 等. 基于点目标分析的InSAR技术检测地表微小形变的研究[J]. 城市地质, 2006(2):38-41.
Liao M S, Lu L J, Wang Y, et al. Study on InSAR technology for detecting surface micro deformation based on point target analysis[J]. Urban Geology, 2006(2):38-41.
[10] 丁荣荣, 徐佳, 林晓彬, 等. 基于高分辨率TerraSAR-X影像的PSInSAR地表形变监测[J]. 国土资源遥感, 2015,27(4):158-164.doi: 10.6046/gtzyyg.2015.04.24.
doi: 10.6046/gtzyyg.2015.04.24
Ding R R, Xu J, Lin X B, et al. Surface deformation monitoring by PSInSAR based on high resolution TerraSAR-X image[J]. Remote Sensing of Land and Resources, 2015,27(4):158-164.doi: 10.6046/gtzyyg.2015.04.24.
doi: 10.6046/gtzyyg.2015.04.24
[11] Caló F, Notti D, Galve J P, et al. DInSAR-based detection of land subsidence and correlation with groundwater depletion in Konya Plain,Turkey[J]. Remote Sensing, 2017,9(1):1-25.
[12] Alam M S, Kumar D, Chatterjee R S, et al. Assessment of land surface subsidence due to underground metal mining using integrated spaceborne repeat-pass differential interferometric synthetic aperture Radar (DInSAR) technique and ground based observations[J]. Journal of the Indian Society of Remote Sensing, 2018,46(10):1569-1580.
doi: 10.1007/s12524-018-0810-2
[13] Vidal-Páez P, Derauw D, Fernandez-Sarría A, et al. Monitoring of mining subsidence in a sector of central chile through the processing of a time series of Sentinel 1 images using differential interferometry techniques (DInSAR)[J]. Proceedings, 2019,19(1):1-4.
doi: 10.3390/proceedings2019019001
[14] Pawluszek-Filipiak K, Borkowski A. Integration of DInSAR and SBAS techniques to determine mining-related deformations using Sentinel-1 data:The case study of Rydułtowy mine in Poland[J]. Remote Sensing, 2020,12(2):1-23.
doi: 10.3390/rs12010001
[15] 常素娟. 天津市公共租赁房住区生态环境设计研究[D]. 天津:河北工业大学, 2015.
Chang S J. Study on ecological environment design of public rental housing in Tianjin[D]. Tianjin:Hebei University of Technology, 2015.
[16] Yi L X, Zhang F, Xu H, et al. Land subsidence in Tianjin,China[J]. Environmental Earth Sciences, 2011,62(6):1151-1161.
doi: 10.1007/s12665-010-0604-5
[17] 刘晓杰, 赵超英, 康亚, 等. 茂县滑坡形变的Sentinel-1数据分析[J]. 测绘科学, 2019,44(4):55-59,71.
Liu X J, Zhao C Y, Kang Y, et al. Sentinel-1 data analysis of landslide deformation in Maoxian County[J]. Surveying and Mapping Science, 2019,44(4):55-59,71.
[1] 李星佑, 张飞, 王筝. 土壤盐渍化遥感监测模型构建方法现状与发展趋势[J]. 自然资源遥感, 2022, 34(4): 11-21.
[2] 肖东升, 杨松. 基于夜间灯光数据的人口空间分布研究综述[J]. 国土资源遥感, 2019, 31(3): 10-19.
[3] 王群, 范景辉, 周伟, 袁蔚林, 童立强, 郭兆成. DEM辅助偏移量跟踪技术的山地冰川运动监测研究[J]. 国土资源遥感, 2018, 30(3): 167-173.
[4] 陆坤, 孟庆岩, 孙云晓, 孙震辉, 张琳琳. 基于GF-2卫星数据的孕穗期小麦叶面积指数反演——以河北省廊坊市为例[J]. 国土资源遥感, 2018, 30(1): 196-202.
[5] 薛武, 马永政, 赵玲, 莫德林. 无人机农村宅基地高精度确权应用[J]. 国土资源遥感, 2017, 29(3): 124-127.
[6] 江威, 何国金, 龙腾飞, 尹然宇, 宋小璐, 袁益琴, 凌赛广. 基于北斗和GPS的高分二号全色影像正射精度验证与分析[J]. 国土资源遥感, 2017, 29(3): 211-216.
[7] 丁荣荣, 徐佳, 林晓彬, 许康. 基于高分辨率TerraSAR-X影像的PSInSAR地表形变监测[J]. 国土资源遥感, 2015, 27(4): 158-164.
[8] 赵兴刚, 柳林, 钱静. 基于TerraSAR-X全极化数据的北极地区海冰信息提取[J]. 国土资源遥感, 2014, 26(3): 130-134.
[9] 高懋芳, 覃志豪. 中国MODIS地表温度产品验证[J]. 国土资源遥感, 2006, 18(3): 15-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发