Advances in research on the dynamic monitoring of global vegetation based on the vegetation optical depth
YANG Ni1,2(), DENG Shulin3(), FAN Yanhong2, XIE Guoxue4
1. School of Geography and Information Engineering, China University of Geosciences(Wuhan), Wuhan 430074, China 2. School of Management Science and Engineering, Guangxi University of Finance and Economics, Nanning 530003, China 3. School of Geography Science and Planning, Nanning Normal University, Nanning 530001, China 4. Institute of Agricultural Science and Technology Information, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
The vegetation optical depth (VOD) serves as a microwave-based method for estimating vegetation water content and biomass. Compared to optical remote sensing, the satellite-based VOD, exhibiting a lower sensitivity to atmospheric disturbances, can measure the characteristics and information of vegetation in various aspects, thus providing an independent and complementary data source for global vegetation monitoring. It has been extensively applied to investigate the effects of global climate and environmental changes on vegetation. Discerning the research advances of VOD application in the dynamic monitoring of global vegetation is critical for VOD’s further development and application. Hence, this study first presented the primary methods for obtaining the VOD through inversion of passive and active microwave data, comparatively analyzing the principal characteristics of various sensor VOD products. Then, this study generalized the current research advances of VOD in the dynamic monitoring of vegetation in terms of vegetation characteristic monitoring (like vegetation water content and biomass), carbon balance analysis, drought monitoring, and phenological analysis. Finally, this study expounded the advantages, limitations, and improvement approaches of VOD products, envisioning the application prospect of VOD in the dynamic monitoring of vegetation.
杨妮, 邓树林, 樊艳红, 谢国雪. 基于植被光学厚度的全球植被动态监测进展[J]. 自然资源遥感, 2024, 36(2): 1-9.
YANG Ni, DENG Shulin, FAN Yanhong, XIE Guoxue. Advances in research on the dynamic monitoring of global vegetation based on the vegetation optical depth. Remote Sensing for Natural Resources, 2024, 36(2): 1-9.
Frappart F, Wigneron J P, Li X J, et al. Global monitoring of the vegetation dynamics from the vegetation optical depth (VOD):A review[J]. Remote Sensing, 2020, 12(18):2915.
Zhao W, Wen F P, Cai J F. Methods,progresses,and challenges of passive microwave soil moisture spatial downscaling[J]. National Remote Sensing Bulletin, 2022, 26(9):1699-1722.
[3]
Moesinger L, Dorigo W, de Jeu R, et al. The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA)[J]. Earth System Science Data, 2020, 12(1):177-196.
[4]
Jackson T J, Schmugge T J. Vegetation effects on the microwave emission of soils[J]. Remote Sensing of Environment, 1991, 36(3):203-212.
[5]
Liu X Z, Wigneron J P, Fan L, et al. ASCAT IB:A radar-based vegetation optical depth retrieved from the ASCAT scatterometer satellite[J]. Remote Sensing of Environment, 2021, 264:112587.
[6]
Karthikeyan L, Pan M, Konings A G, et al. Simultaneous retrieval of global scale vegetation optical depth,surface roughness,and soil moisture using X-band AMSR-E observations[J]. Remote Sensing of Environment, 2019, 234:111473.
[7]
Wang M J, Fan L, Frappart F, et al. An alternative AMSR2 vegetation optical depth for monitoring vegetation at large scales[J]. Remote Sensing of Environment, 2021, 263:112556.
[8]
Fernandez-Moran R, Al-Yaari A, Mialon A, et al. SMOS-IC:An alternative SMOS soil moisture and vegetation optical depth product[J]. Remote Sensing, 2017, 9(5):457.
[9]
Li X J, Wigneron J P, Fan L, et al. A new SMAP soil moisture and vegetation optical depth product (SMAP-IB):Algorithm,assessment and inter-comparison[J]. Remote Sensing of Environment, 2022, 271:112921.
[10]
Zhang H X, Hagan D F T, Dalagnol R, et al. Forest canopy changes in the southern Amazon during the 2019 fire season based on passive microwave and optical satellite observations[J]. Remote Sensing, 2021, 13(12):2238.
[11]
Jones M O, Jones L A, Kimball J S, et al. Satellite passive microwave remote sensing for monitoring global land surface phenology[J]. Remote Sensing of Environment, 2011, 115(4):1102-1114.
[12]
Liu Y Y, de Jeu R A M, McCabe M F, et al. Global long-term passive microwave satellite-based retrievals of vegetation optical depth[J]. Geophysical Research Letters, 2011, 38(18):L18402.
[13]
Liu Y Y, van Dijk A I J M, Miralles D G, et al. Enhanced canopy growth precedes senescence in 2005 and 2010 Amazonian droughts[J]. Remote Sensing of Environment, 2018, 211:26-37.
[14]
Tian F, Brandt M, Liu Y Y, et al. Remote sensing of vegetation dynamics in drylands:Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel[J]. Remote Sensing of Environment, 2016, 177:265-276.
[15]
Chen X, Liu Y Y, Evans J P, et al. Estimating fire severity and carbon emissions over Australian tropical savannahs based on passive microwave satellite observations[J]. International Journal of Remote Sensing, 2018, 39(20):6479-6498.
[16]
van Marle M J E, van der Werf G R, de Jeu R A M, et al. Annual South American forest loss estimates based on passive microwave remote sensing (1990—2010)[J]. Biogeosciences, 2016, 13(2):609-624.
[17]
Liu Y Y, van Dijk A I J M, de Jeu R A M, et al. Recent reversal in loss of global terrestrial biomass[J]. Nature Climate Change, 2015, 5(5):470-474..
Njoku E G, Entekhabi D. Passive microwave remote sensing of soil moisture[J]. Journal of Hydrology, 1996, 184(1):101-129.
[20]
Mo T, Choudhury B J, Schmugge T J, et al. A model for microwave emission from vegetation-covered fields[J]. Journal of Geophysical Research-Oceans, 1982, 87(C13):11229-11237.
[21]
Meesters A G C, De Jeu R A M, Owe M. Analytical derivation of the vegetation optical depth from the microwave polarization difference index[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2):121-123.
[22]
Zhou Z L, Fan L, De Lannoy G, et al. Retrieval of high-resolution vegetation optical depth from Sentinel-1 data over a grassland region in the Heihe River Basin[J]. Remote Sensing, 2022, 14(21):5468.
[23]
Liu X Z, Wigneron J P, Frappart F, et al. New ascat vegetation optical depth (IB-VOD) retrievals over Africa[C]// IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2020:5011-5013.
[24]
Bindlish R, Barros A P. Parameterization of vegetation backscatter in radar-based,soil moisture estimation[J]. Remote Sensing of Environment, 2001, 76(1):130-137.
[25]
Baghdadi N, El Hajj M, Zribi M, et al. Calibration of the water cloud model at C-band for winter crop fields and grasslands[J]. Remote Sensing, 2017, 9(9):969.
[26]
Zribi M, Muddu S, Bousbih S, et al. Analysis of L-band SAR data for soil moisture estimations over agricultural areas in the tropics[J]. Remote Sensing, 2019, 11(9):1122.
[27]
Vreugdenhil M, Dorigo W A, Wagner W, et al. Analyzing the vegetation parameterization in the TU-Wien ASCAT soil moisture retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6):3513-3531.
[28]
Wigneron J P, Jackson T J, O’Neill P, et al. Modelling the passive microwave signature from land surfaces:A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms[J]. Remote Sensing of Environment, 2017, 192:238-262.
[29]
Wigneron J P, Li X J, Frappart F, et al. SMOS-IC data record of soil moisture and L-VOD:Historical development,applications and perspectives[J]. Remote Sensing of Environment, 2021, 254:112238.
[30]
Konings A G, Piles M, Das N, et al. L-band vegetation optical depth and effective scattering albedo estimation from SMAP[J]. Remote Sensing of Environment, 2017, 198:460-470.
[31]
Li X J, Wigneron J P, Frappart F, et al. Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products[J]. Remote Sensing of Environment, 2021, 253:112208.
[32]
Du J Y, Kimball J S, Jones L A, et al. A global satellite environmental data record derived from AMSR-E and AMSR2 microwave Earth observations[J]. Earth System Science Data, 2017, 9(2):791-808.
[33]
Kerr Y H, Waldteufel P, Richaume P, et al. The SMOS soil moisture retrieval algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5):1384-1403.
[34]
Moesinger L, Zotta R M, van der Schalie R, et al. Monitoring vegetation condition using microwave remote sensing:The standardized vegetation optical depth index (SVODI)[J]. Biogeosciences, 2022, 19(21):5107-5123.
[35]
Al Bitar A, Mialon A, Kerr Y H, et al. The global SMOS Level 3 daily soil moisture and brightness temperature maps[J]. Earth System Science Data, 2017, 9(1):293-315.
[36]
Chan S K, Bindlish R, O’Neill P E, et al. Assessment of the SMAP passive soil moisture product[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8):4994-5007.
[37]
Chan S K, Bindlish R, O’Neill P, et al. Development and assessment of the SMAP enhanced passive soil moisture product[J]. Remote Sensing of Environment, 2018, 204:931-941.
doi: 10.1016/j.rse.2017.08.025
pmid: 32943797
[38]
Schmugge T J, Jackson T J. A dielectric model of the vegetation effects on the microwave emission from soils[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(4):757-760.
[39]
Ulaby F T, Dobson M C, Brunfeldt D R. Improvement of moisture estimation accuracy of vegetation-covered soil by combined active/passive microwave remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 1983, GE-21(3):300-307.
[40]
Carver K R, Elachi C, Ulaby F T. Microwave remote-sensing from space[J]. Proceedings of the IEEE, 1985, 73(6):970-996.
[41]
Saatchi S S, Moghaddam M. Estimation of crown and stem water content and biomass of boreal forest using polarimetric SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2):697-709.
[42]
Saatchi S S, van Zyl J J, Asrar G. Estimation of canopy water content in Konza Prairie grasslands using synthetic aperture radar measurements during FIFE[J]. Journal of Geophysical Research-Atmospheres, 1995, 100(D12):25481-25496.
[43]
Liu R, Wen J, Wang X, et al. Derivation of vegetation optical depth and water content in the source region of the Yellow River using the FY-3B microwave data[J]. Remote Sensing, 2019, 11(13):1536.
[44]
Baghdadi N, Le Maire G, Bailly J S, et al. Evaluation of ALOS/PALSAR L-band data for the estimation of Eucalyptus plantations aboveground biomass in Brazil[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8):3802-3811.
[45]
Teubner I E, Forkel M, Camps-Valls G, et al. A carbon sink-driven approach to estimate gross primary production from microwave satellite observations[J]. Remote Sensing of Environment, 2019, 229:100-113.
doi: 10.1016/j.rse.2019.04.022
[46]
Zhou X, Yamaguchi Y, Arjasakusuma S. Distinguishing the vegetation dynamics induced by anthropogenic factors using vegetation optical depth and AVHRR NDVI:A cross-border study on the Mongolian Plateau[J]. Science of the Total Environment, 2018,616-617:730-743.
[47]
Liu Y Y, van Dijk A I J M, McCabe M F, et al. Global vegetation biomass change (1988—2008) and attribution to environmental and human drivers[J]. Global Ecology and Biogeography, 2013, 22(6):692-705.
[48]
Afshar M H, Al-Yaari A, Yilmaz M T. Comparative evaluation of microwave L-band VOD and optical NDVI for agriculture drought detection over central Europe[J]. Remote Sensing, 2021, 13(7):1251.
[49]
Togliatti K, Hartman T, Walker V A, et al. Satellite L-band vegetation optical depth is directly proportional to crop water in the US Corn Belt[J]. Remote Sensing of Environment, 2019, 233:111378.
[50]
Brandt M, Wigneron J P, Chave J, et al. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands[J]. Nature Ecology & Evolution, 2018, 2(5):827-835.
[51]
Fan L, Wigneron J P, Xiao Q, et al. Evaluation of microwave remote sensing for monitoring live fuel moisture content in the Mediterranean region[J]. Remote Sensing of Environment, 2018, 205:210-223.
[52]
Forkel M, Dorigo W, Lasslop G, et al. Recent global and regional trends in burned area and their compensating environmental controls[J]. Environmental Research Communications, 2019, 1(5):051005.
[53]
Owe M, de Jeu R, Holmes T. Multisensor historical climatology of satellite-derived global land surface moisture[J]. Journal of Geophysical Research-Earth Surface, 2008, 113(F1):F01002.
[54]
Tian F, Wigneron J P, Ciais P, et al. Coupling of ecosystem-scale plant water storage and leaf phenology observed by satellite[J]. Nature Ecology & Evolution, 2018, 2(9):1428-1435.
[55]
Momen M, Wood J D, Novick K A, et al. Interacting effects of leaf water potential and biomass on vegetation optical depth[J]. Journal of Geophysical Research-Biogeosciences, 2017, 122(11):3031-3046.
[56]
Wigneron J P, Fan L, Ciais P, et al. Tropical forests did not recover from the strong 2015-2016 El Niño event[J]. Science Advances, 2020, 6(6):eaay4603.
[57]
Wigneron J P, Kerr Y, Chanzy A, et al. Inversion of surface parameters from passive microwave measurements over a soybean field[J]. Remote Sensing of Environment, 1993, 46(1):61-72.
[58]
Saatchi S S, Harris N L, Brown S, et al. Benchmark map of forest carbon stocks in tropical regions across three continents[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(24):9899-9904.
doi: 10.1073/pnas.1019576108
pmid: 21628575
[59]
Rodríguez-Fernández J, Mialon A, Mermoz S, et al. An evaluation of SMOS L-band vegetation optical depth (L-VOD) data sets:High sensitivity of L-VOD to above-ground biomass in Africa[J]. Biogeosciences, 2018, 15(14):4627-4645.
[60]
Bond W J, Midgley G F. Carbon dioxide and the uneasy interactions of trees and savannah grasses[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2012, 367(1588):601-612.
doi: 10.1098/rstb.2011.0182
pmid: 22232770
[61]
Yu H Q, Zhang Q, Sun P, et al. Impact of droughts on winter wheat yield in different growth stages during 2001—2016 in eastern China[J]. International Journal of Disaster Risk Science, 2018, 9(3):376-391.
[62]
Dai A G. Increasing drought under global warming in observations and models[J]. Nature Climate Change, 2013, 3(1):52-58.
[63]
Liu W T, Kogan F N. Monitoring regional drought using the vegetation condition index[J]. International Journal of Remote Sensing, 1996, 17(14):2761-2782.
[64]
Déry S J, Brown R D. Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback[J]. Geophysical Research Letters, 2007, 34(22):L22504.
[65]
Zhou L M, Tian Y H, Myneni R B, et al. Widespread decline of Congo rainforest greenness in the past decade[J]. Nature, 2014, 509(7498):86-90.
[66]
Jiang H, Song L S, Li Y, et al. Monitoring the reduced resilience of forests in southwest China using long-term remote sensing data[J]. Remote Sensing, 2021, 14(1):32.
[67]
Lawal S, Hewitson B, Egbebiyi T S, et al. On the suitability of using vegetation indices to monitor the response of Africa’s terrestrial ecoregions to drought[J]. Science of the Total Environment, 2021, 792:148282.
[68]
Penuelas J, Rutishauser T, Filella I. Phenology feedbacks on climate change[J]. Science, 2009, 24(5929):887-888.
[69]
Peñuelas J, Filella I. Responses to a warming world[J]. Science, 2001, 294(5543):793-795.
doi: 10.1126/science.1066860
pmid: 11679652
[70]
Richardson A D, Keenan T F, Migliavacca M, et al. Climate change,phenology,and phenological control of vegetation feedbacks to the climate system[J]. Agricultural and Forest Meteorology, 2013, 169:156-173.
[71]
Zeng Z Z, Piao S L, Li L Z X, et al. Impact of earth greening on the terrestrial water cycle[J]. Journal of Climate, 2018, 31(7):2633-2650.
[72]
Garonna I, de Jong R, de Wit A J W, et al. Strong contribution of autumn phenology to changes in satellite-derived growing season length estimates across Europe (1982—2011)[J]. Global Change Biology, 2014, 20(11):3457-3470.
doi: 10.1111/gcb.12625
pmid: 24797086
[73]
Tian F, Brandt M, Liu Y Y, et al. Mapping gains and losses in woody vegetation across global tropical drylands[J]. Global Change Biology, 2017, 23(4):1748-1760.
doi: 10.1111/gcb.13464
pmid: 27515022
[74]
Tong X, Tian F, Brandt M, et al. Trends of land surface phenology derived from passive microwave and optical remote sensing systems and associated drivers across the dry tropics 1992—2012[J]. Remote Sensing of Environment, 2019, 232:111307.
[75]
Chaparro D, Piles M, Vall-Ilossera M, et al. L-band vegetation optical depth for crop phenology monitoring and crop yield assessment[C]// IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2018:8225-8227.
[76]
Kilic L, Prigent C, Aires F, et al. Expected performances of the Copernicus imaging microwave radiometer (CIMR) for an all-weather and high spatial resolution estimation of ocean and sea ice parameters[J]. Journal of Geophysical Research-Oceans, 2018, 123(10):7564-7580.
Zhang J, Fang S B, Liu H H. Machine learning approach for estimation of crop yield combining use of optical and microwave remote sensing data[J]. Journal of GeoInformation Science, 2021, 23(6):1082-1091.
Jing X, Bai Z F, Zhang T, et al. Comparative analysis of 3FLD and reflectivity fluorescence index to estimate the severity of wheat stripe rust disease[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(11):136-142.
Zhang Z Y, Wang S H, Qiu B, et al. Retrieval of sun-induced chlorophyll fluorescence and advancements in carbon cycle application[J]. Journal of Remote Sensing, 2019, 23(1):37-52.
Guo N, Wang X P, Wang W, et al. Review of drought monitoring based on remote sensing technology[J]. Advances in Meteorological Science and Technology, 2020, 10(3):10-20.
Yang T Y, Qiu J X, Xiao G A. Agricultural drought monitoring and winter wheat yield estimation in North China[J]. Acta Ecologica Sinica, 2023, 43(5):1936-1947.