Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (3): 108-116    DOI: 10.6046/zrzyyg.2023121
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于复杂阴影测量方法的建筑物高度反演
李志新1(), 纪松1(), 范大昭1, 高定1, 李永建1, 王刃2
1.信息工程大学地理空间信息学院,郑州 450001
2.山东五征集团,日照 276800
Building height inversion based on the complex shadow measurement method
LI Zhixin1(), JI Song1(), FAN Dazhao1, GAO Ding1, LI Yongjian1, WANG Ren2
1. Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, China
2. Shandong Wuzheng Group Co.,Ltd., Rizhao 276800, China
全文: PDF(11331 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

阴影法能以较低的成本测量大范围的城市建筑物高度,但其中的阴影长度测量方法在复杂阴影场景中存在测量效率低、精度差、鲁棒性低等问题。对此,该文提出了一种复杂建筑阴影测量方法。该方法首先通过渔网法和多种约束条件相结合实现对阴影的测量与划分; 其次,统计所有划分区域的阴影长度值,利用四分位法和双向逼近策略确定阴影最优值; 然后,综合评估所有区域最优值确定阴影长度; 最后,利用立体交会的建筑高度对应用该阴影测量方法计算的建筑物高度进行验证。结果表明: 该方法计算建筑物高度有90.6%以上绝对误差在0~5 m之间。因此可以得出该文方法计算的阴影长度有着较高的精度,能够满足不同种类的复杂阴影测量,提高了阴影法反演建筑物高度的精度,为城市建筑物高度的反演提供新的技术支撑。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李志新
纪松
范大昭
高定
李永建
王刃
关键词 渔网法分区统计四分位法剔除粗差双向逼近策略最优值评估    
Abstract

Building heights are necessary for urban informatics, providing a significant basis for the planning and early warning of risks for urban construction. The shadow method, which can measure the heights of urban buildings on a large scale at a low cost, faces challenges such as low efficiency, accuracy, and robustness in building height inversion in complex shadow scenes. This study proposed a measurement method for these scenes. First, the shadows were measured and delineated using the fishing net method combined with multiple constraints. Second, the shadow lengths of all the zones divided were obtained, and the optimal values were determined using the quartile method and the bidirectional approximation strategy. Third, the shadow lengths were determined through a comprehensive assessment of the optimal values of all zones. The results show that 90.6% of building heights calculated using the new method exhibited absolute errors ranging from 0 to 5 m. Therefore, this method features elevated accuracy of building height inversion for various complex shadow scenes, laying a basis for research into the inversion and expansion of urban building heights.

Key wordsfishing net method    zonal statistics    quartile method to eliminate gross error    bidirectional approximation strategy    optimal value evaluation
收稿日期: 2023-05-09      出版日期: 2024-09-03
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“高分辨率卫星影像协同处理与定位能力星间传递技术研究”(41971427);嵩山实验室项目“空间智能融合感知技术及精密重建系统”(221100211000-5);国防科工局项目“高分遥感测绘应用示范系统(二期)”(42-Y30B04-9001-19/21)
通讯作者: 纪 松(1983-),男,博士,副教授,博士生导师,主要从事航天摄影测量以及遥感影像处理与分析方面的研究。Email: jisong_chxy@163.com
作者简介: 李志新(1997-),男,硕士研究生,主要从事数字摄影测量研究。Email: 1294622314@qq.com
引用本文:   
李志新, 纪松, 范大昭, 高定, 李永建, 王刃. 基于复杂阴影测量方法的建筑物高度反演[J]. 自然资源遥感, 2024, 36(3): 108-116.
LI Zhixin, JI Song, FAN Dazhao, GAO Ding, LI Yongjian, WANG Ren. Building height inversion based on the complex shadow measurement method. Remote Sensing for Natural Resources, 2024, 36(3): 108-116.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023121      或      https://www.gtzyyg.com/CN/Y2024/V36/I3/108
Fig.1  建筑物阴影测量技术路线
Fig.2-1  建筑物阴影场景
Fig.2-2  建筑物阴影场景
Fig.3  分区测量示意图
Fig.4  确定最优值
Fig.5  最优值评估技术路线
Fig.6  研究区可视化图
Fig.7  建筑物与阴影几何关系示意图
Fig.8  分区测量结果
测量方法 MAE/m MRE/% RMSE/m
文献[9] 7.494 8.8 10.498
文献[12] 5.675 6.7 9.318
文献[16] 7.136 8.3 10.565
本文方法 1.332 1.8 1.657
Tab.1  测量误差统计
Fig.9  不同阴影场景建筑物高度估算误差
研究区 MAE/m MRE/% RMSE/m
简单场景1 3.179 5.3 2.292
简单场景2 2.995 9.8 4.362
简单场景3 1.949 2.1 1.388
简单场景4 1.204 3.5 4.014
复杂场景1 3.455 3.8 4.589
复杂场景2 2.362 5.4 2.745
复杂场景3 4.512 6.3 5.526
复杂场景4 3.733 10.1 4.763
Tab.2  建筑物高度误差统计
Fig.10  建筑物高度误差统计
[1] Huang H, Chen P, Xu X, et al. Estimating building height in China from ALOS AW3D30[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 185:146-157.
[2] Qin R. Change detection on LOD 2 building models with very high resolution spaceborne stereo imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 96:179-192.
[3] Venter Z S, Brousse O, Esau I, et al. Hyperlocal mapping of urban air temperature using remote sensing and crowdsourced weather data[J]. Remote Sensing of Environment, 2020, 242:111791.
[4] Zhang Z, Qian Z, Zhong T, et al. Vectorized rooftop area data for 90 cities in China[J]. Scientific Data, 2022, 9(1):66.
doi: 10.1038/s41597-022-01168-x pmid: 35236863
[5] 岳照溪, 张永军, 段延松, 等. DEM辅助的卫星光学遥感影像山体阴影检测与地形辐射校正[J]. 测绘学报, 2018, 47(1):113-122.
doi: 10.11947/j.AGCS.2018.20170194
Yue Z X, Zhang Y J, Duan Y S, et al. DEM assisted shadow detection and topography correction of satellite remote sensing images in mountainous area[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(1):113-122.
doi: 10.11947/j.AGCS.2018.20170194
[6] 陈亭, 祝善友, 张桂欣, 等. 高分辨率遥感影像阴影与立体像对提取建筑物高度比较研究[J]. 地球信息科学学报, 2016, 18(9):1267-1275.
doi: 10.3724/SP.J.1047.2016.01267
Chen T, Zhu S Y, Zhang G X, et al. A comparative study on building height extraction based on the shadow information in high resolution remote sensing image and stereo images[J]. Journal of Geo-Information Science, 2016, 18(9):1267-1275.
[7] Irvin R B, McKeown D M. Methods for exploiting the relationship between buildings and their shadows in aerial imagery[J]. IEEE Transactions on Systems,Man,and Cybernetics, 1989, 19(6):1564-1575.
[8] Shettigara V K, Sumerling G M. Height determination of extended objects using shadows in SPOT images[J]. Photogrammetric Engineering and Remote Sensing, 1998, 64(1):35-43.
[9] Wang X, Yu X, Ling F. Building heights estimation using ZY3 data:A case study of Shanghai,China[C]// 2014 IEEE Geoscience and Remote Sensing Symposium.IEEE, 2014:1749-1752.
[10] Turker M, Sumer E. Building-based damage detection due to earthquake using the watershed segmentation of the post-event aerial images[J]. International Journal of Remote Sensing, 2008, 29(11):3073-3089.
[11] Shao Y, Taff G N, Walsh S J. Shadow detection and building-height estimation using IKONOS data[J]. International Journal of Remote Sensing, 2011, 32(22):6929-6944.
[12] Liasis G, Stavrou S. Satellite images analysis for shadow detection and building height estimation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119:437-450.
[13] 张豪. 基于深度学习的遥感影像建筑物阴影提取方法研究[D]. 成都: 西南交通大学, 2020.
Zhang H. Research on building shadow extraction method of Remote sensing image based on deep learning[D]. Chengdu: Southwest Jiaotong University, 2020.
[14] 马川. 基于单幅高分辨率遥感影像的城市建筑物三维几何建模[D]. 成都: 西南交通大学, 2012.
Ma C. 3D geometric modeling of buildings with a single high resolution remotely sensed image[D]. Chengdu: Southwest Jiaotong University, 2012.
[15] 王永刚, 刘慧平. 利用角点最近距离统计平均法计算建筑物阴影长度[J]. 国土资源遥感, 2008, 20(3):32-36.doi:10.6046/gtzyyg.2008.03.08.
Wang Y G, Liu H P. The calculation of building shadow length using statistical average method based on corner shortest distance[J]. Remote Sensing for Land and Resources, 2008, 20(3):32-36.doi:10.6046/gtzyyg.2008.03.08.
[16] Xie Y, Feng D, Xiong S, et al. Multi-scene building height estimation method based on shadow in high resolution imagery[J]. Remote Sensing, 2021, 13(15):2862.
[17] 李志新, 王梦飞, 贾伟洁, 等. 一种结合阴影信息的建筑物层数识别方法[J]. 自然资源遥感, 2023, 35(3):97-106.doi:10.6046/zrzyyg.2022226.
Li Z X, Wang M F, Jia W J, et al. A method for identifying the number of building floors basod on shadow information[J]. Remote Sensing for Natural Resources, 2023, 35(3):97-106.doi:10.6046/zrzyyg.2022226.
[18] 陈冲. 基于高分影像阴影的多场景建筑物高度反演研究[D]. 西安: 西安科技大学, 2020.
Chen C. Building heigh information extraction from shadow derived from highresolution satellite image based on scene classification[D]. Xi'an: Xi'an University of Science and Technology, 2020.
[19] 谢亚坤. 基于高分影像阴影的多种场景建筑物高度信息提取方法研究[D]. 成都: 西南交通大学, 2018.
Xie Y K. Research on building height information extraction method based on shadow of high-resolution image in multiple scenes[D]. Chengdu: Southwest Jiaotong University, 2018.
[20] 张珩. 高分影像建筑物阴影检测方法及其高度反演研究[D]. 成都: 西南交通大学, 2017.
Zhang H. Research on buildings shadow detection method and height inversion with high resolution sensed image[D]. Chengdu: Southwest Jiaotong University, 2017.
[21] 陈钧. 能力验证结果统计处理中四分位数的算法探讨[J]. 中国计量, 2012(12) :94-95.
Chen J. Discussion on the algorithm of quartile in statistical processing of ability verification results[J]. China Metrology, 2012(12):94-95.
[22] 王杰茜. 基于高度反演的建筑物阴影分类方法研究[D]. 成都: 西南交通大学, 2021.
Wang J X. Research on building shadow classification method based on height inversion[D]. Chengdu: Southwest Jiaotong University, 2021.
[23] Luo S, Li H, Shen H. Deeply supervised convolutional neural network for shadow detection based on a novel aerial shadow imagery dataset[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167:443-457.
[1] 李志新, 王梦飞, 贾伟洁, 纪松, 王宇飞. 一种结合阴影信息的建筑物层数识别方法[J]. 自然资源遥感, 2023, 35(3): 97-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发