Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (3): 96-107    DOI: 10.6046/zrzyyg.2023132
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于高分辨率遥感影像和改进U-Net模型的滑坡提取——以汶川地区为例
白石1(), 唐攀攀1(), 苗朝2, 金彩凤3, 赵博1, 万昊明1
1.南湖实验室大数据技术研究中心,嘉兴 314002
2.中国地质调查局探矿工艺研究所,成都 611734
3.嘉兴南湖学院建筑工程学院,嘉兴 314001
Information extraction of landslides based on high-resolution remote sensing images and an improved U-Net model: A case study of Wenchuan, Sichuan
BAI Shi1(), TANG Panpan1(), MIAO Zhao2, JIN Caifeng3, ZHAO Bo1, WAN Haoming1
1. Research Center of Big Data Technology, Nanhu Laboratory, Jiaxing 314002, China
2. Institute of Exploration Technology Chinese Academy of Geological Sciences, Chengdu 611734, China
3. School of Architectural Engineering, Jiaxing Nanhu University, Jiaxing 314001, China
全文: PDF(7655 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

滑坡快速识别检测可以满足滑坡灾害的高时效性要求,对灾害损失评估和灾后救援具有重要意义。研究提出一种基于深度学习的滑坡自动提取方法提高滑坡检测的精度。该方法使用目标区遥感影像、数字高程模型数据和面向对象多特征变化向量分析法(robust change vector analysis,RCVA)提取的变化特征作为模型输入,设计结合密集上采样和非对称卷积的U-Net模型提高滑坡识别精度。以四川省汶川地区作为研究区,设计试验测试了不同数据组合和不同方法得到的像素级滑坡分割精度,结果表明该研究提出的改进的U-Net模型可以取得更好的分割结果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
白石
唐攀攀
苗朝
金彩凤
赵博
万昊明
关键词 深度学习滑坡语义分割U-Net    
Abstract

Rapid identification and detection of landslides can both meet the requirement of timely responses to disasters and hold great significance for loss assessment and rescue post-disaster. This study proposed a deep learning-based automatic information extraction method for landslides to improve their detection accuracy. Specifically, the model input of this method includes the remote sensing images of the target areas, data from digital elevation models, and variation characteristics extracted using robust change vector analysis (RCVA). Furthermore, a U-Net model integrating dense upsampling and asymmetric convolution is designed to improve the identification accuracy. Taking Wenchuan, Sichuan Province as the study area, this study designed experiments to test the pixel-level image segmentation accuracy of landslides using different data combinations and methods. The results indicate that the improved U-Net model proposed in the study can produce the optimal image segmentation results of landslides.

Key wordsdeep learning    landslide    semantic segmentation    U-Net
收稿日期: 2023-05-16      出版日期: 2024-09-03
ZTFLH:  TP79  
基金资助:南湖实验室自研项目“大数据一体化互操作系统研发”(NSS2021C102004)
通讯作者: 唐攀攀(1985-),男,副研究员,从事遥感AI解译、地质灾害监测等。Email: tangpp@nanhulab.ac.cn
作者简介: 白 石(1994-),男,硕士,主要从事遥感智能解译、遥感地质等方向研究。Email: bais@nanhulab.ac.cn
引用本文:   
白石, 唐攀攀, 苗朝, 金彩凤, 赵博, 万昊明. 基于高分辨率遥感影像和改进U-Net模型的滑坡提取——以汶川地区为例[J]. 自然资源遥感, 2024, 36(3): 96-107.
BAI Shi, TANG Panpan, MIAO Zhao, JIN Caifeng, ZHAO Bo, WAN Haoming. Information extraction of landslides based on high-resolution remote sensing images and an improved U-Net model: A case study of Wenchuan, Sichuan. Remote Sensing for Natural Resources, 2024, 36(3): 96-107.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023132      或      https://www.gtzyyg.com/CN/Y2024/V36/I3/96
Fig.1  研究区位置及Google Earth遥感影像
Fig.2  滑坡提取流程
Fig.3  改进的U-Net网络模型结构
Fig.4  DUC示意图
Fig.5  滑坡解译结果
数据构成 IoU Precision Recall F1-score 浮点运算次数/109 参数量/106
RGB 0.68 0.80 0.85 0.79 160.7 17.3
RGB+DEM 0.70 0.83 0.84 0.81 161.1 17.3
RGB+DEM+C 0.71 0.81 0.87 0.81 161.2 17.3
Tab.1  不同输入数据源对滑坡解译的精度的影响
Fig.6  变化特征及加入变化特征前后滑坡解译结果
数据集 IoU Precision Recall F1-score 浮点运算次数/109 参数量/106
RGB+DEM 0.47 0.61 0.69 0.62 161.2 17.3
RGB+DEM+C 0.73 0.83 0.85 0.84 162.2 17.3
Tab.2  变化特征对滑坡解译的精度的影响
模型 IoU Precision Recall F1-score 浮点运算次数/109 参数量/106
U-Net+AC+DUC 0.76 0.84 0.90 0.85 192.8 56.5
ResU-Net 0.62 0.68 0.91 0.73 324.9 13.0
DeeplabV3+ 0.62 0.75 0.82 0.74 89.6 59.3
UperNet 0.65 0.79 0.82 0.76 183.1 126.1
HATNet 0.63 0.77 0.80 0.75 65.0 70.4
Convnext 0.54 0.86 0.62 0.69 193.7 138.0
Swin-Transformer 0.50 0.56 0.81 0.60 264.8 138.0
Tab.3  常用分割网络与改进后的U-Net网络评价指标对比结果
序号 图像 标签 U-Net+
AC+DUC
ResU-Net DeeplabV3+ UperNet HATNet Conv
next
Swin-
Transformer
a
b
c
d
e
f
g
Tab.4  不同模型滑坡解译结果
模型 IoU Precision Recall F1-score 浮点运算次数/109 参数量/106
U-Net 0.71 0.81 0.87 0.81 161.2 17.3
U-Net+AC 0.71 0.81 0.88 0.81 198.0 20.4
U-Net+DUC 0.75 0.82 0.90 0.84 155.9 53.4
U-Net+AC+DUC 0.76 0.84 0.90 0.85 192.8 56.5
Tab.5  使用不同策略改进的U-Net网络评价指标对比结果
序号 图像 标签 U-Net U-Net+AC U-Net
+DUC
U-Net
+AC+DUC
a
b
c
d
e
f
g
Tab.6  不同模型滑坡解译结果比较
[1] Li H, Xu Q, He Y, et al. Modeling and predicting reservoir landslide displacement with deep belief network and EWMA control charts:A case study in Three Gorges Reservoir[J]. Landslides, 2020, 17(3):693-707.
[2] Mondini A C, Guzzetti F, Chang K T, et al. Landslide failures detection and mapping using synthetic aperture Radar:Past,present and future[J]. Earth-Science Reviews, 2021, 216:103574.
[3] Hoeppe P. Trends in weather related disasters:Consequences for insurers and society[J]. Weather and Climate Extremes, 2016, 11:70-79.
[4] Haque U, da Silva P F, Devoli G, et al. The human cost of global warming:Deadly landslides and their triggers (1995—2014)[J]. Science of the Total Environment, 2019, 682:673-684.
[5] Huggel C, Clague J J, Korup O. Is climate change responsible for changing landslide activity in high mountains?[J]. Earth Surface Processes and Landforms, 2012, 37(1):77-91.
[6] 闫琦, 李慧, 荆林海, 等. 灾后高分辨率遥感影像的地震型滑坡信息自动提取算法研究[J]. 激光与光电子学进展, 2017, 54(11):112801.
Yan Q, Li H, Jing L H, et al. Automatic extraction algorithm of seismic landslide information based on after-calamity high-resolution remote sensing image[J]. Laser & Optoelectronics Progress, 2017, 54(11):112801.
[7] 朱静, 唐川. 遥感技术在我国滑坡研究中的应用综述[J]. 遥感技术与应用, 2012, 27(3):458-464.
Zhu J, Tang C. An overview of remote sensing applications for landslide research in China[J]. Remote Sensing Technology and Application, 2012, 27(3):458-464.
[8] Bellotti F, Bianchi M, Colombo D, et al. Advanced InSAR techniques to support landslide monitoring[C]//Mathematics of Planet Earth.Berlin, Heidelberg:Springer, 2014:287-290.
[9] Guzzetti F, Mondini A C, Cardinali M, et al. Landslide inventory maps:New tools for an old problem[J]. Earth-Science Reviews, 2012, 112(1/2):42-66.
[10] Dou J, Yunus A P, Bui D T, et al. Improved landslide assessment using support vector machine with bagging,boosting,and stacking ensemble machine learning framework in a mountainous watershed,Japan[J]. Landslides, 2020, 17(3):641-658.
[11] Barlow J, Martin Y, Franklin S E. Detecting translational landslide scars using segmentation of Landsat ETM+ and DEM data in the northern Cascade Mountains,British Columbia[J]. Canadian Journal of Remote Sensing, 2003, 29(4):510-517.
[12] Rau J Y, Jhan J P, Rau R J. Semiautomatic object-oriented landslide recognition scheme from multisensor optical imagery and DEM[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2):1336-1349.
[13] Rib H T, Liang T. Recognition and identification[J]. Transportation Research Board Special Report, 1978,(176).
[14] Nichol J E, Shaker A, Wong M S. Application of high-resolution stereo satellite images to detailed landslide hazard assessment[J]. Geomorphology, 2006, 76(1/2):68-75.
[15] 李晨辉, 郝利娜, 许强, 等. 面向对象的高分辨率遥感影像地震滑坡分层识别[J]. 自然资源遥感, 2023, 35(1):74-80.doi:10.6046/zrzyyg.2022013.
Li C H, Hao L N, Xu Q, et al. Object-oriented hierarchical identification of earthquake-induced landslides based on high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(1):74-80.doi:10.6046/zrzyyg.2022013.
[16] 张雨, 明冬萍, 赵文祎, 等. 基于高分光学卫星影像的泸定地震型滑坡提取与分析[J]. 自然资源遥感, 2023, 35(1):161-170.doi:10.6046/zrzyyg.2022434.
Zhang Y, Ming D P, Zhao W Y, et al. The extraction and analysis of Luding earthquake-induced landslide based on high-resolution optical satellite images[J]. Remote Sensing for Natural Resources, 2023, 35(1):161-170.doi:10.6046/zrzyyg.2022434.
[17] 李松, 邓宝昆, 徐红勤, 等. 地震型滑坡灾害遥感快速识别方法研究[J]. 遥感信息, 2015, 30(4):25-28.
Li S, Deng B K, Xu H Q, et al. Fast interpretation methods of landslides triggered by earthquake using remote sensing imagery[J]. Remote Sensing Information, 2015, 30(4):25-28.
[18] Marjanović M, Kovaĉević M, Bajat B, et al. Landslide susceptibility assessment using SVM machine learning algorithm[J]. Engineering Geology, 2011, 123(3):225-234.
[19] Lee S. Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data[J]. International Journal of Remote Sensing, 2005, 26(7):1477-1491.
[20] Stumpf A, Kerle N. Object-oriented mapping of landslides using random forests[J]. Remote Sensing of Environment, 2011, 115(10):2564-2577.
[21] Goetz J N, Brenning A, Petschko H, et al. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling[J]. Computers & Geosciences, 2015, 81:1-11.
[22] He K, Zhang X, Ren S, et al. Identity mappings in deep residual networks[M]//Leibe B,Matas J,Sebe N,et al.,Eds.Computer Vision-ECCV 2016. Cham: Springer International Publishing, 2016:630-645.
[23] Chen L C, Papandreou G, Kokkinos I, et al. DeepLab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848.
[24] Girshick R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision (ICCV).Santiago,Chile.IEEE, 2015:1440-1448.
[25] Längkvist M, Kiselev A, Alirezaie M, et al. Classification and segmentation of satellite orthoimagery using convolutional neural networks[J]. Remote Sensing, 2016, 8(4):329.
[26] Mahdianpari M, Salehi B, Rezaee M, et al. Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery[J]. Remote Sensing, 2018, 10(7):1119.
[27] Ghorbanzadeh O, Blaschke T, Gholamnia K, et al. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection[J]. Remote Sensing, 2019, 11(2):196.
[28] 杨昭颖, 韩灵怡, 郑向向, 等. 基于卷积神经网络的遥感影像及DEM滑坡识别——以黄土滑坡为例[J]. 自然资源遥感, 2022, 34(2):224-230.doi:10.6046/zrzyyg.2021204.
Yang Z Y, Han L Y, Zheng X X, et al. Landslide identification using remote sensing images and DEM based on convolutional neural network:A case study of loess landslide[J]. Remote Sensing for Natural Resources, 2022, 34(2):224-230.doi:10.6046/zrzyyg.2021204.
[29] Ye C, Li Y, Cui P, et al. Landslide detection of hyperspectral remote sensing data based on deep learning with constrains[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(12):5047-5060.
[30] Wang T, Liu M, Zhang H, et al. Landslide detection based on improved YOLOv5 and satellite images[C]// 2021 4th International Conference on Pattern Recognition and Artificial Intelligence (PRAI).Yibin,China.IEEE, 2021: 367-371.
[31] Yu B, Chen F, Xu C, et al. Matrix SegNet:A practical deep learning framework for landslide mapping from images of different areas with different spatial resolutions[J]. Remote Sensing, 2021, 13(16):3158.
[32] Zhang M, Shi W, Chen S, et al. Deep multiple instance learning for landslide mapping[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(10):1711-1715.
[33] Liu P, Wei Y, Wang Q, et al. Research on post-earthquake landslide extraction algorithm based on improved U-Net model[J]. Remote Sensing, 2020, 12(5):894.
[34] Meena S R, Soares L P, Grohmann C H, et al. Landslide detection in the Himalayas using machine learning algorithms and U-Net[J]. Landslides, 2022, 19(5):1209-1229.
[35] Su Z, Chow J K, Tan P S, et al. Deep convolutional neural network-based pixel-wise landslide inventory mapping[J]. Landslides, 2021, 18(4):1421-1443.
[36] Ghorbanzadeh O, Shahabi H, Crivellari A, et al. Landslide detection using deep learning and object-based image analysis[J]. Landslides, 2022, 19(4):929-939.
[37] Oktay O, Schlemper J, Le Folgoc L, et al. Attention U-Net:Learning where to look for the pancreas[EB/OL]. 2018:arXiv:1804.03999. https://arxiv.org/abs/1804.03999.pdf.
[38] Zhou Z, Siddiquee M M R, Tajbakhsh N, et al. UNet++:Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6):1856-1867.
[39] 龙玉洁, 李为乐, 黄润秋, 等. 汶川地震震后10 a绵远河流域滑坡遥感自动提取与演化趋势分析[J]. 武汉大学学报(信息科学版), 2020, 45(11):1792-1800.
Long Y J, Li W L, Huang R Q, et al. Automatic extraction and evolution trend analysis of landslides in Mianyuan River basin in the 10 years after Wenchuan earthquake[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11):1792-1800.
[40] Chen M, Tang C, Li M, et al. Changes of surface recovery at coseismic landslides and their driving factors in the Wenchuan earthquake-affected area[J]. CATENA, 2022, 210:105871.
[41] 许强. 对地质灾害隐患早期识别相关问题的认识与思考[J]. 武汉大学学报(信息科学版), 2020, 45(11):1651-1659.
Xu Q. Understanding and consideration of related issues in early identification of potential geohazards[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11):1651-1659.
[42] Claessens L, Heuvelink G B M, Schoorl J M, et al. DEM resolution effects on shallow landslide hazard and soil redistribution modelling[J]. Earth Surface Processes and Landforms, 2005, 30(4):461-477.
[43] Thonfeld F, Feilhauer H, Braun M, et al. Robust change vector analysis (RCVA) for multi-sensor very high resolution optical satellite data[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 50:131-140.
[44] Wang X, Wang L, Zhong X, et al. PaI-Net:A modified U-Net of reducing semantic gap for surgical instrument segmentation[J]. IET Image Processing, 2021, 15(12):2959-2969.
[45] Ding X, Guo Y, Ding G, et al. ACNet:Strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV).Seoul,Korea (South).IEEE, 2019:1911-1920.
[47] Denton E, Zaremba W, Bruna J, et al. Exploiting linear structure within convolutional networks for efficient evaluation[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 1.December 8 - 13,2014,Montreal,Canada.ACM, 2014:1269-1277.
[48] Jaderberg M, Vedaldi A, Zisserman A. Speeding up convolutional neural networks with low rank expansions[C]// Proceedings of the British Machine Vision Conference 2014.Nottingham.British Machine Vision Association, 2014.
[49] He K, Zhang X, Ren S, et al. Delving deep into rectifiers:Surpassing human-level performance on ImageNet classification[C]// 2015 IEEE International Conference on Computer Vision (ICCV).Santiago,Chile.IEEE, 2015:1026-1034.
[1] 陈刚, 郝社锋, 蒋波, 喻永祥, 车增光, 刘汉湖, 杨容浩. 基于机载LiDAR技术植被茂密区小型滑坡识别与评价[J]. 自然资源遥感, 2024, 36(3): 196-205.
[2] 张瑞瑞, 夏浪, 陈立平, 丁晨琛, 郑爱春, 胡新苗, 伊铜川, 陈梅香, 陈天恩. 深度语义分割网络无人机遥感松材线虫病变色木识别[J]. 自然资源遥感, 2024, 36(3): 216-224.
[3] 罗维, 李修华, 覃火娟, 张木清, 王泽平, 蒋柱辉. 基于多源卫星遥感影像的广西中南部地区甘蔗识别及产量预测[J]. 自然资源遥感, 2024, 36(3): 248-258.
[4] 武德宏, 郝利娜, 严丽华, 唐烽顺, 郑光. 金沙江滑坡群InSAR探测与形变因素分析[J]. 自然资源遥感, 2024, 36(3): 259-266.
[5] 温泉, 李璐, 熊立, 杜磊, 刘庆杰, 温奇. 基于深度学习的遥感图像水体提取综述[J]. 自然资源遥感, 2024, 36(3): 57-71.
[6] 张利军, 贺思睿, 张建东, 彭光雄, 徐质彬, 谢渐成, 唐凯, 卜建财. 多源遥感技术支持下的滑坡地灾隐患识别——以常澧地区为例[J]. 自然资源遥感, 2024, 36(2): 173-187.
[7] 杨帆, 马志刚, 文艳, 董杰, 姜清辉. 联合SAR影像相位和幅度信息的多形变量级滑坡监测——以金沙江白格滑坡为例[J]. 自然资源遥感, 2024, 36(2): 257-267.
[8] 宋爽爽, 肖开斐, 刘昭华, 曾昭亮. 一种基于YOLOv5的高分辨率遥感影像目标检测方法[J]. 自然资源遥感, 2024, 36(2): 50-59.
[9] 李婉悦, 娄德波, 王成辉, 刘欢, 张长青, 范莹琳, 杜晓川. 基于改进U-Net网络的花岗伟晶岩信息提取方法[J]. 自然资源遥感, 2024, 36(2): 89-96.
[10] 蔡建澳, 明冬萍, 赵文祎, 凌晓, 张雨, 张星星. 基于综合遥感的察隅县滑坡隐患识别及致灾机理分析[J]. 自然资源遥感, 2024, 36(1): 128-136.
[11] 宋英旭, 邹昱嘉, 叶润青, 贺志霞, 王宁涛. 利用GEE云平台实现三峡库区滑坡危险性动态分析[J]. 自然资源遥感, 2024, 36(1): 154-161.
[12] 李新同, 史岚, 陈多妍. 基于深度学习的闽浙赣GPM降水产品降尺度方法[J]. 自然资源遥感, 2023, 35(4): 105-113.
[13] 余绍淮, 徐乔, 余飞. 联合光学和SAR遥感影像的山区公路滑坡易发性评价方法[J]. 自然资源遥感, 2023, 35(4): 81-89.
[14] 邓丁柱. 基于深度学习的多源卫星遥感影像云检测方法[J]. 自然资源遥感, 2023, 35(4): 9-16.
[15] 陈笛, 彭秋志, 黄培依, 刘雅璇. 采用注意力机制与改进YOLOv5的光伏用地检测[J]. 自然资源遥感, 2023, 35(4): 90-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发