Data quality assessment of the AMS-3000 wide-field three-linear-array stereoscopic aerial survey system
LI Tianqi1(), ZHANG Xian1(), JIN Dingjian1, GAO Zihong1, HAN Yachao1, XU Ning2, GAO Han3, LI Gongxin2
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China 2. Shandong Provincial No.4 Institute of Geological and Mineral Survey, Weifang 261021, China 3. Shandong Institute of Coal Geology Planning and Exploration, Jinan 250102, China
The AMS-3000 wide-field three-linear-array stereoscopic aerial survey system (hereafter referred to as the AMS-3000 system) is China’s first independently developed airborne linear-array aerial survey system. It can obtain panchromatic and R-, G-, and B-band multispectral images. However, the data quality of these images lacks quantitative assessments and analyses. Focusing on the area along the Jinsha River within western Panzhihua City, Sichuan Province, this study assessed the spectral quality of the data obtained from the AMS-3000 system in terms of grayscale, texture, and energy features, and noise level. Moreover, this study compared the AMS-3000 system with the internationally recognized ADS100 aerial photography system and assessed the geometric accuracy of the AMS-3000 system using the 1∶2 000-scale terrain data. Additionally, this study analyzed the effectiveness of the AMS-3000 system in the geological industry by applying it to the investigation of the mineral resource exploitation status and geologic hazards. Overall, this study serves as a reference for the application promotion and improvement of the AMS-3000 system.
Chen J, Gao Z H, Wang S S, et al. A review on the development of aerial remote sensing geological survey technology in the Three Gorges Reservoir area[J]. Remote Sensing for Land and Resources, 2020, 32(2):1-10.doi:10.6046/gtzyyg.2020.02.01.
Xu Q, Guo C, Dong X J. Application status and prospect of aerial remote sensing technology for geohazards[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10):2020-2033.
doi: 10.11947/j.AGCS.2022.20220302
Yao Y, Xu Y S, Ding Y L, et al. Optical-system design for large field-of-view three-line array airborne mapping camera[J]. Optics and Precision Engineering, 2018, 26(9):2335-2344.
[4]
朱芳芳. 基于ADS100影像的城市建筑物信息提取[D]. 兰州: 兰州交通大学, 2020.
Zhu F F. Extracting urban building information based on ADS100 images[D]. Lanzhou: Lanzhou Jiaotong University, 2020.
Jin D J, Wang J C, Wu F, et al. Aerial remote sensing technology and its applications in geological survey[J]. Remote Sensing for Land and Resources, 2019, 31(4):1-10.doi:10.6046/gtzyyg.2019.04.01.
Wang T, Zhang Y, Zhang Y S, et al. Investigation on GNSS lever arms and IMU bore sight misalignment calibration of domestic airborne wide-field three CCD camera[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(11):1474-1486.
Wang T, Zhang Y, Zhang Y S, et al. Geometric calibration of domestic airborne wide-field three-linear CCD camera[J]. Journal of Remote Sensing, 2020, 24(6):739-751.
Zhang F, Sang D K. The application of Leica ADS100 camera using Yun-5 flight platform in 1∶500 topographic mapping[J]. Bulletin of Surveying and Mapping, 2015(8):133-134.
Wu X, Zhang X, Sun X J, et al. Radiation quality evaluation of SPARK hyperspectral satellite image[J]. Remote Sensing Techno-logy and Application, 2018, 33(2):233-240.
Liu R, Sun J L, Wang J L, et al. Data quality evaluation of Chinese HJ CCD sensor[J]. Advances in Earth Science, 2011, 26 (9):971-979.
[11]
覃帮勇. 高光谱遥感数据质量评价体系及方法研究[D]. 北京: 中国科学院大学, 2014.
Qin B Y. Study on the quality evaluation system and method of hyperspectral remote sensing data[D]. Beijing: University of Chinese Academy of Sciences, 2014.
Wang C C, Xue R R, Zhao S H, et al. Quality evaluation and analysis of GF-5 hyperspectral image data[J]. Geography and Geo-Information Science, 2021, 37(1):33-38,125.
Sun T, Wang P B, Fang J Y, et al. Image quality assessment of the three-linear-array/multispectral sensors of Mapping Satellite-1 03[J]. Journal of Remote Sensing, 2016, 20(6):1335-1341.
Tian Y Q, Guo P, Lu H Q. Texture feature extraction of multiband remote sensing image based on gray level co-occurrence matrix[J]. Computer Science, 2004, 31(12):162-163,195.
Hou Q Q, Wang F, Yan L. Extraction of color image texture feature based on gray-level co-occurrence matrix[J]. Remote Sensing for Land and Resources, 2013, 25(4):26-32.doi:10.6046/gtzyyg.2013.04.05.
Yao C, Zhao J L. Quality evaluation of the THEOS satellite imagery using textural and spectral features[J]. Journal of Anhui Agricultural University, 2015, 42(2):316-321.
[22]
Haralick R M. Image texture survey[M]. Handbook of Statistics, 1982,2:399-415.
Xu W, Long X X, Li Q P, et al. Image radiometric and geometric accuracy evaluation of GF-4 satellite[J]. Spacecraft Recovery and Remote Sensing, 2016, 37(4):16-25.
Wei D D, Gan F P, Shang K, et al. Evaluation of geometric positional accuracy of PAN /MUX image for CBERS-04 satellite[J]. Radio Engineering, 2018, 48(5):401-405.
State Bureau of Surveying and Mapping. CH/T 9008.1-2010 Digital products of fundamental geographic information 1∶500,1∶1 000,1∶2 000 digital line graphs[S]. Beijing: State Bureau of Surveying and Mapping, 2010.
State Bureau of Surveying and Mapping. CH/T 9008.2-2010 Digital products of fundamental geographic information 1∶500,1∶1 000,1∶2 000 digital line graphs[S]. Beijing: State Bureau of Surveying and Mapping, 2010.
State Bureau of Surveying and Mapping. CH/T 9008.3-2010 Digital products of fundamental geographic information 1∶500,1∶1 000,1∶2 000 digital line graphs[S]. Beijing: State Bureau of Surveying and Mapping, 2010.
Zheng X W, Peng B, Shang K. Assessment of the interpretation ability of domestic satellites in geological remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3):1-10.doi:10.6046/zrzyyg.2020357.
Chen L, Jia J, Wang H Q. An overview of applying high resolution remote sensing to natural resources survey[J]. Remote Sensing for Land and Resources, 2019, 31(1):1-7.doi:10.6046/gtzyyg.2019.01.01.