Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (3): 133-141    DOI: 10.6046/zrzyyg.2023340
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于资源1号02D高光谱图像湿地水体分类方法对比——以白洋淀为例
陈民1(), 彭栓2,3, 王涛2, 吴雪芳2, 刘润璞2, 陈玉烁2, 方艳茹2, 阳平坚2()
1.地质出版社有限公司,北京 100083
2.中国环境科学研究院,北京 100012
3.天津大学环境科学与工程学院,天津 300073
A comparative study of water body classification of wetlands based on hyperspectral images from the ZY1-02D satellite: A case study of the Baiyangdian wetland
CHEN Min1(), PENG Shuan2,3, WANG Tao2, WU Xuefang2, LIU Runpu2, CHEN Yushuo2, FANG Yanru2, YANG Pingjian2()
1. Geological Publishing House, Beijing 100083, China
2. Chinese Research Academy of Environmental Sciences, Beijing 100012, China
3. School of Environmental Science and Engineering, Tianjin University, Tianjin 300073, China
全文: PDF(4118 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 水体是维持湿地的三要素之一,对其进行动态监测能够更好地保护湿地生态。传统的湿地水体监测采用实地测量或遥感图像人工解译方法,此类方法成本高、效率低,不利于连续动态监测。近年来,采用机器学习、深度学习等方法从卫星遥感图像中提取水体成为湿地水体监测的有效手段。因此,该文基于资源1号02D高光谱遥感图像,采用机器学习、神经网络和Transformer网络3类方法对白洋淀湿地水体进行分类,对比不同光谱预处理方法及训练使用不同图像邻域大小对水体分类准确率和计算效率的影响,探究湿地水体分类的最佳数据预处理方式和分类模型。结果显示,深度学习方法在分类精度和计算效率上均显著优于机器学习方法,尤其是基于光谱空间残差网络模型(spectral-spatial residual network,SSRN),在使用全谱段信息和9×9邻域大小时取得了最高分类精度(准确率达99.09%,召回率为99.62%,F1-score 为0.99)。此外,大气水汽吸收波段虽然信噪比较低,但仍包含重要信息,在模型训练和预测中使用该波段信息能够提升湿地水体分类精度。该研究成果有望为湿地水体分类的业务化操作提供方法支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈民
彭栓
王涛
吴雪芳
刘润璞
陈玉烁
方艳茹
阳平坚
关键词 湿地分类高光谱机器学习深度学习白洋淀    
Abstract

Water bodies serve as one of the three major elements in maintaining wetlands. Their dynamic monitoring can effectively protect wetland ecosystems. Conventional methods for monitoring water bodies in wetlands employ field surveys or manual interpretation of remote sensing images, which are costly and inefficient, and inapplicable to continuous dynamic monitoring. In recent years, using methods like machine and deep learning to extract water body features from satellite remote sensing images has developed into an effective means for monitoring water bodies in wetlands. Based on the hyperspectral images from the ZY1-02D satellite, this study classified the water bodies in the Baiyangdian wetland using machine learning, convolutional and transformer neural networks. The accuracy and computational efficiency of water body classification under different spectral preprocessing methods and different image neighborhood sizes in training were compared to explore the optimal data preprocessing method and classification model for water bodies in wetlands. The results indicate that deep learning significantly outperformed machine learning in classification accuracy and computational efficiency. In particular, the spectral-spatial residual network (SSRN) model based on the convolutional neural network achieved the highest classification accuracy (OA: 99.09 %, Recall: 99.62 %, F1-score: 0.99) under conditions of all spectral bands and a 9×9 neighborhood size. Besides, despite a low signal-to-noise ratio, the atmospheric water vapor absorption band contained significant information, assisting in improving the classification accuracy of water bodies in the wetland during model training and prediction. The results of this study are expected to provide methodological support for the business operation of water body classification of wetlands.

Key wordswetland classification    hyperspectral image    machine learning    deep learning    Baiyangdian
收稿日期: 2023-11-14      出版日期: 2025-07-01
ZTFLH:  TP79  
基金资助:中央级公益性科研院所基本科研业务专项项目“东寨港红树林湿地多环芳烃和有机磷酸醋的大气-植物交换及落叶介导的沉降”(2023YSKY-42)
通讯作者: 阳平坚(1980-),男,博士,研究员,主要从事环境政策、环境规划等研究。Email: yang.pingjian@craes.org.cn
作者简介: 陈民(1988-),女,硕士,工程师,主要从事环境规划、环境遥感应用研究。Email: chenyi090114@sina.com
引用本文:   
陈民, 彭栓, 王涛, 吴雪芳, 刘润璞, 陈玉烁, 方艳茹, 阳平坚. 基于资源1号02D高光谱图像湿地水体分类方法对比——以白洋淀为例[J]. 自然资源遥感, 2025, 37(3): 133-141.
CHEN Min, PENG Shuan, WANG Tao, WU Xuefang, LIU Runpu, CHEN Yushuo, FANG Yanru, YANG Pingjian. A comparative study of water body classification of wetlands based on hyperspectral images from the ZY1-02D satellite: A case study of the Baiyangdian wetland. Remote Sensing for Natural Resources, 2025, 37(3): 133-141.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023340      或      https://www.gtzyyg.com/CN/Y2025/V37/I3/133
Fig.1  研究区域示意图
参数名称 VNIR波段 SWIR波段
波长范围/nm 395~1 040 1 005~2 501
幅宽/km 60 60
地面分辨率/m 30 30
光谱分辨率/nm 10 20
波段数量 76 90
图像量化/bits 12 12
相对辐射定标精度/% 0.32 0.65
Tab.1  ZY1-02D卫星高光谱图像参数
Fig.2  白洋淀湿地水体分类技术路线
Fig.3  白洋淀湿地区域水体分类样本
土地利用类型 训练样本/个 验证样本/个 总面积/km2
湖泊水面 1 000 46 977 43.18
内陆滩涂 1 000 15 866 15.18
村庄 1 000 5 448 5.80
沼泽地 1 000 2 848 3.46
水浇地 1 000 10 956 10.76
Tab.2  训练和验证样本像素数量和面积
模型 每类样本的分类准确率 OA/% mAP/% F1 R/%
湖泊水面/% 内陆滩涂/% 村庄/% 沼泽地/% 水浇地/%
SVM 97.51 59.66 99.27 46.75 92.60 83.90 89.73 0.82 89.30
AdaBoost 98.17 69.96 99.61 71.90 93.29 89.48 95.61 0.89 93.23
RF 97.72 61.96 98.43 57.54 91.51 85.33 92.67 0.84 90.06
CNN1D 97.51 84.76 99.56 90.11 96.10 94.54 98.13 0.95 95.75
RNN 95.80 87.08 99.13 85.68 96.09 94.03 97.74 0.94 94.95
SSTN(Pixel) 96.87 83.94 98.53 89.34 94.99 93.79 97.55 0.94 95.07
ViT(Pixel) 97.09 88.59 99.38 91.91 95.00 95.11 98.50 0.95 95.83
Tab.3  基于单点光谱的湿地分类精度
Fig.4  基于单点光谱的分类结果
模型 每类样本的分类准确率 OA/% mAP/% F1 R/%
湖泊水面/% 内陆滩涂/% 村庄/% 沼泽/% 水浇地/%
ResNet 98.68 90.65 99.85 96.57 95.88 96.67 99.14 0.97 98.06
CNN2D1D 99.03 87.31 99.56 93.65 96.44 96.03 98.90 0.96 97.83
CNN3D 98.69 88.45 99.47 94.83 96.68 96.20 98.93 0.97 97.78
ViT 99.66 93.22 98.48 97.50 99.06 98.11 99.69 0.98 98.96
SSRN 99.55 97.99 99.80 99.30 99.04 99.19 99.93 0.99 99.50
SSTN 99.47 97.37 99.80 99.96 99.14 99.05 99.83 0.99 99.41
Tab.4  基于邻域范围光谱的湿地分类精度
Fig.5  基于邻域范围光谱的分类结果
类型 模型 每类样本的分类准确率 OA/% mAP/% F1 R/% OA-AB/%
湖泊水
面/%
内陆滩
涂/%
村庄/% 沼泽/% 水浇地/%



SVM 96.68 53.85 96.93 40.63 92.38 80.30 84.00 0.79 86.14 83.90
AdaBoost 97.86 64.40 97.24 59.22 92.71 86.44 92.80 0.85 90.76 89.48
RF 97.44 60.11 96.12 53.25 91.44 84.05 90.92 0.83 88.72 85.33
CNN1D 97.32 85.21 99.45 84.85 95.87 94.30 98.13 0.94 95.94 94.54
RNN 96.47 81.47 99.45 86.61 96.01 93.12 97.20 0.93 94.55 94.03
SSTN(Pixel) 94.84 83.40 99.16 85.62 94.56 92.55 95.98 0.92 92.48 93.79
ViT(Pixel) 95.95 88.38 99.00 79.04 95.53 93.95 97.75 0.93 95.01 95.11



ResNet 96.97 87.69 98.07 92.37 97.54 95.10 98.74 0.95 96.36 96.67
CNN2D1D 97.61 82.49 99.49 84.62 96.18 93.79 97.99 0.94 96.28 96.03
CNN3D 95.88 85.54 98.67 92.54 94.62 93.75 97.94 0.94 95.44 96.20
ViT 95.53 81.71 98.50 85.77 93.96 92.35 96.66 0.92 93.47 98.11
SSRN 99.88 97.36 99.98 94.21 99.19 99.09 99.95 0.99 99.62 99.19
SSTN 98.05 95.43 99.65 94.79 97.82 97.51 99.57 0.98 98.02 99.05
Tab.5  去除低信噪比波段后基于单点光谱和基于邻域范围光谱的湿地分类精度
网络 时间 网络 时间 网络 时间
SVM 63.36 SSTN(Pixel) 14.76±0.15 SSRN 35.19±3.02
RF 1.01(多核),7.11(单核) RNN 14.93±0.50 ViT 35.02±5.78
AdaBoost 98.26 ResNet 21.74±0.38 SSTN 21.29±0.40
CNN1D 14.17±0.17 CNN2D1D 21.72±0.49
ViT(Pixel) 14.76±0.17 CNN3D 20.72±0.31
Tab.6  训练1轮所需时间
Fig.6  模型最高准确率与训练轮次的关系
Fig.7  模型准确率随训练轮次的变化
[1] 李丹, 吴保生, 陈博伟, 等. 基于卫星遥感的水体信息提取研究进展与展望[J]. 清华大学学报(自然科学版), 2020, 60(2):147-161.
Li D, Wu B S, Chen B W, et al. Review of water body information extraction based on satellite remote sensing[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(2):147-161.
[2] 朱金峰, 周艺, 王世新, 等. 1975—2018年白洋淀湿地变化分析[J]. 遥感学报, 2019, 23(5):971-986.
Zhu J F, Zhou Y, Wang S X, et al. Analysis of changes of Baiyangdian wetland from 1975 to 2018 based on remote sensing[J]. Journal of Remote Sensing, 2019, 23(5):971-986.
[3] 韦嫦, 付波霖, 覃娇玲, 等. 基于多时相Sentinel-1A的沼泽湿地水面时空动态变化监测[J]. 自然资源遥感, 2022, 34(2):251-260.doi:10.6046/zrzyyg.2021205.
Wei C, Fu B L, Qin J L. et al. Monitoring of spatial-temporal dynamic changes in water surface in marshes based on multi-temporal Sentinel-1A data[J]. Remote Sensing for Natural Resources, 2022, 34(2):251-260.doi:10.6046/zrzyyg.2021205.
[4] 伊力哈穆江·艾尼弯, 孔翠翠, 马利刚, 等. 基于中分辨率影像湿地离散水体提取研究——以新疆阿勒泰科克苏湿地为例[J]. 安徽农业科学, 2022, 50(11):50-55.
Elhamjan· A, Kong C C, Ma L G,et al. Research on the extraction of discrete water body in wetland based on medium-resolution image:Taking Altay Kekesu wetland in Xinjiang as an example[J]. Journal of Anhui Agricultural Sciences, 2022, 50(11):50-55.
[5] 崔囤月, 王世东, 张学军. 1991—2021年雄安新区土地利用与植被覆盖变化遥感研究[J]. 自然资源遥感, 2023, 35(4):214-225.doi:10.6046/zizyyg.2022311.
Cui D Y, Wang S D, Zhang X J. A remote sensing-based study on change in land use and vegetation cover in Xiong’an New Area from 1991 to 2021[J]. Remote Sensing for Natural Resources, 2023, 35(4):214-225.doi:10.6046/zizyyg.2022311.
[6] 梁爽, 宫兆宁, 赵文吉, 等. 基于多季相Sentinel-2影像的白洋淀湿地信息提取[J]. 遥感技术与应用, 2021, 36(4):777-790.
doi: 10.11873/j.issn.1004-0323.2021.4.0777
Liang S, Gong Z N, Zhao W J, et al. Information extraction of Baiyangdian wetland based on multi-season sentinel-2 images[J]. Remote Sensing Technology and Application, 2021, 36(4):777-790.
[7] Liu C, Tao R, Li W, et al. Joint classification of hyperspectral and multispectral images for mapping coastal wetlands[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020,14:982-996.
[8] 孙伟伟, 任凯, 肖晨超, 等. 资源一号02D卫星高光谱与多光谱融合数据滨海湿地分类应用[J]. 航天器工程, 2020, 29(6):162-168.
Sun W W,, Ren K, Xiao C C, et al. Classification of coastal wetlands based on hyperspectral and multispectral fusion data of ZY-1-02D satellite[J]. Spacecraft Engineering, 2020, 29(6):162-168.
[9] 河北省生态环境厅. 2022河北省生态环境状况公报[R/OL]. (2022-05)[2023-11-06]. http://hbepb.hebei.gov.cn/res/hbhjt/upload/file/20230602/bd9d635a2555484786a9891052dbfa49.pdf.
Department of ecological environment of Hebei Province. 2022 Report on the State of the Ecology and Environment in HeBei Province[R/OL]. (2022-05)[2023-11-06]. http://hbepb.hebei.gov.cn/res/hbhjt/upload/file/20230602/bd9d635a2555484786a9891052dbfa49.pdf.
[10] 资源一号02D卫星总体概况及影像产品[J]. 航天器工程, 2020, 29(6):3-14.
General situation and image products of ZY-1 02D satellite[J]. Spacecraft Engineering, 2020, 29(6):3-14.
[11] 刘银年, 孙德新, 梁建, 等. 资源一号02D卫星高光谱相机在轨性能及稳定性评估[J]. 航天器工程, 2020, 29(6):93-97.
Liu Y N, Sun D X, Liang J, et al. Overview of ZY-1-02D satellite AHSI on-orbit performance and stability[J]. Spacecraft Engineering, 2020, 29(6):93-97.
[12] Hu W, Huang Y, Wei L, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015, 2015(1):258619.
[13] Mou L, Ghamisi P, Zhu X X. Deep recurrent neural networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7):3639-3655.
[14] He K, Zhang X, Ren S, et al. Deep residual learning for image re-cognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,NV,USA.IEEE, 2016:770-778.
[15] Ben HamidaA, Benoit A, Lambert P, et al. 3-D deep learning approach for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8):4420-4434.
[16] Li Y, Zhang H, Shen Q. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network[J]. Remote Sensing, 2017, 9(1):67.
[17] Zhong Z, Li J, Luo Z, et al. Spectral-spatial residual network for hyperspectral image classification:A 3-D deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2):847-858.
[18] Paoletti M E, Haut J M, Plaza J, et al. A new deep convolutional neural network for fast hyperspectral image classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018,145:120-147.
[19] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words:Transformers for image recognition at scale[J/OL]. 2020(2020-10-22). https://arxiv.org/abs/2010.11929.
[20] Zhong Z, Li Y, Ma L, et al. Spectral-spatial transformer network for hyperspectral image classification:A factorized architecture search framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022,60:1-15.
[1] 邹海靖, 邹滨, 王玉龙, 张波, 邹伦文. 基于多尺度样本集优化策略的矿区工业固废及露天采场遥感识别[J]. 自然资源遥感, 2025, 37(3): 1-8.
[2] 郭伟, 李煜, 金海波. 高维上下文注意和双感受野增强的SAR船舶检测[J]. 自然资源遥感, 2025, 37(3): 104-112.
[3] 魏林, 冉浩翔, 尹玉萍. 多尺度特征衔接的高光谱分类网络[J]. 自然资源遥感, 2025, 37(3): 113-122.
[4] 陈兰兰, 范永超, 肖海平, 万俊辉, 陈磊. 结合时序InSAR与IRIME-LSTM模型的大范围矿区地表沉降预测[J]. 自然资源遥感, 2025, 37(3): 245-252.
[5] 张贻然, 潘斌, 徐夏, 朱俊峰. 基于字典学习光谱解混的绿藻亚像元面积估计[J]. 自然资源遥感, 2025, 37(2): 88-95.
[6] 郑宗生, 高萌, 周文睆, 王政翰, 霍志俊, 张月维. 基于样本迭代优化策略的密集连接多尺度土地覆盖语义分割[J]. 自然资源遥感, 2025, 37(2): 11-18.
[7] 庞敏. 国产多源卫片图斑智能提取平台研究与应用[J]. 自然资源遥感, 2025, 37(2): 148-154.
[8] 钟晴, 麦麦提吐尔逊·艾则孜, 米热古力·艾尼瓦尔, 郝海宇. 绿洲城市土壤砷含量高光谱估算[J]. 自然资源遥感, 2025, 37(1): 188-194.
[9] 陈薪, 施国萍. 基于机器学习的FY-4A气溶胶光学厚度反演[J]. 自然资源遥感, 2025, 37(1): 213-220.
[10] 胡博洋, 孙建国, 张倩, 杨云睿. 用于植被变化归因的区域机器学习残差趋势法[J]. 自然资源遥感, 2025, 37(1): 46-53.
[11] 黄川, 李雅琴, 祁越然, 魏晓燕, 邵远征. 基于3D-CAE的高光谱解混及小样本分类方法[J]. 自然资源遥感, 2025, 37(1): 8-14.
[12] 祁昌炜, 董基恩, 程旭, 叶高峰, 何书跃, 代威, 汪冰. ZY-1 02D高光谱数据在柴北缘荒漠区蚀变矿物填图及找矿中的应用[J]. 自然资源遥感, 2024, 36(4): 31-42.
[13] 张冬韵, 吴田军, 李曼嘉, 郭逸飞, 骆剑承, 董文. 地块尺度农作物遥感分类及其不确定性分析[J]. 自然资源遥感, 2024, 36(4): 124-134.
[14] 崔博伦, 李欣, 安宁, 仝迟鸣, 张家铭, 朱军. 针对起伏异质地表的一体化成像光谱仪成像建模[J]. 自然资源遥感, 2024, 36(4): 165-174.
[15] 李薇, 樊彦国, 周培希. 改进Transformer的高光谱图像地物分类方法——以黄河三角洲为例[J]. 自然资源遥感, 2024, 36(3): 137-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发