Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (1): 217-226    DOI: 10.6046/zrzyyg.2022444
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于GF-2和ASTER数据青海德龙地区构造蚀变信息提取及找矿预测
王艺龙1,2(), 王然1,2(), 严子清3, 张新铭3, 李笑龙3, 徐崇文3
1.辽宁省地质勘查院有限责任公司,大连 116100
2.高分辨率对地观测系统辽宁地质资源环境应用与服务中心,大连 116100
3.中国地质大学(武汉)资源学院,武汉 430074
Tectonic alteration information extraction and prospecting prediction for the Delong area of Qinghai Province based on GF-2 and ASTER data
WANG Yilong1,2(), WANG Ran1,2(), YAN Ziqing3, ZHANG Xinming3, LI Xiaolong3, XU Chongwen3
1. Liaoning Institute of Geological Exploration Co.,Ltd., Dalian 116100, China
2. Liaoning Province High-Resolution Observation System Application and Service Center of Geological Resources and Environmental, Dalian 116100, China
3. School of Earth Resources, China University of Geosciences(Wuhan), Wuhan 430074, China
全文: PDF(19046 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

德龙地区位于青海东昆仑金及多金属成矿带东段,是该成矿带内极具勘查潜力区域之一,受限于偏远的地理位置和崎岖的地形条件,大比例尺地球化学勘查及常规地质调查工作难以直接开展。为此,基于ASTER和GF-2数据,通过分析不同空间分辨率遥感影像的色调、几何结构和纹理特征进行线性和环形构造识别; 同时,根据主要蚀变矿物光谱特征分析,利用ASTER可见光—近红外波段和短波红外波段,采用“掩模+主成分分析”方法提取铁化、Al-OH和Mg-OH蚀变信息; 在此基础上,结合多元地学信息及野外调查结果,综合分析遥感解译构造蚀变信息与研究区金矿化的内在联系,建立基于区内金矿床的遥感找矿预测模型,并以此为依据划分出找矿远景区3处。通过野外查证,在德龙找矿远景区新发现金矿体多条。研究结果表明,融合遥感数据和地理信息系统技术可有效识别地表热液蚀变和构造空间结构特征,能够为该地区进一步找矿预测提供参考和依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王艺龙
王然
严子清
张新铭
李笑龙
徐崇文
关键词 GF-2ASTER主成分分析找矿预测德龙地区    
Abstract

The Delong area, located in the eastern segment of the Eastern Kunlun gold-polymetallic metallogenic belt in Qinghai, is recognized as an area with significant exploration potential. However, its remote geographical location and rugged terrain pose challenges to large-scale geochemical explorations and conventional geological surveys. Based on ASTER and GF-2 data, this study identified the linear and circular structures by analyzing the color tones, geometric structures, and textures of remote sensing images with varying resolutions. Through the spectral analysis of primary alteration minerals, this study extracted the information on ferrugination, Al-OH, and Mg-OH alterations from visible light to near-infrared bands and short-wave infrared bands of ASTER using the mask + principal component analysis technique. Then, this study established a remote sensing-based prospecting prediction model for gold deposits in the study area by combining geoscience information and field survey results and comprehensively analyzing the association between the tectonic alteration information derived from remote sensing image interpretation and the gold mineralization of the study area. Using the prediction model, this study delineated three prospective areas for mineral exploration. The field verification revealed several new gold ore bodies in the Delong prospective area. The results show that the integration of remote sensing data and GIS technology can effectively identify surface hydrothermal alterations and tectonic spatial structures. The integration can serve as a guide for subsequent prospecting prediction of the study area.

Key wordsGF-2    ASTER    principal component analysis (PCA)    prospecting prediction    Delong are
收稿日期: 2022-11-17      出版日期: 2024-03-13
ZTFLH:  TP79  
基金资助:青海省地质勘查基金项目“青海省东昆仑东段金银多金属成矿系列研究与关键勘查技术应用示范”(青色地[2021]34号)
通讯作者: 王 然(1988-),男,本科,高级工程师,主要从事遥感技术应用。Email wrwinter1988@163.com
作者简介: 王艺龙(1990-),男,硕士,高级工程师,主要从事遥感地质应用研究和矿产资源调查评价。Email fsmwyl@163.com
引用本文:   
王艺龙, 王然, 严子清, 张新铭, 李笑龙, 徐崇文. 基于GF-2和ASTER数据青海德龙地区构造蚀变信息提取及找矿预测[J]. 自然资源遥感, 2024, 36(1): 217-226.
WANG Yilong, WANG Ran, YAN Ziqing, ZHANG Xinming, LI Xiaolong, XU Chongwen. Tectonic alteration information extraction and prospecting prediction for the Delong area of Qinghai Province based on GF-2 and ASTER data. Remote Sensing for Natural Resources, 2024, 36(1): 217-226.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022444      或      https://www.gtzyyg.com/CN/Y2024/V36/I1/217
Fig.1  德龙地区地质矿产图
Fig.2  德龙地区线性构造遥感解译标志
Fig.3  德龙地区线性构造
Fig.4  德龙地区环形构造遥感解译标志
Fig.5  研究区典型蚀变矿物光谱曲线(USGS)与重采样至ASTER波段的光谱曲线
Fig.6  德龙地区遥感蚀变异常结果
Fig.7  德龙金矿遥感蚀变异常野外验证照片
Fig.8  德龙地区遥感找矿远景区预测
Fig.9  热龙找矿远景区野外验证照片
[1] Chen J J, Fu L B, Selby D, et al. Multiple episodes of gold mineralization in the East Kunlun Orogen,western Central Orogenic Belt,China:Constraints from Re-Os sulfide geochronology[J]. Ore Geo-logy Reviews, 2020, 123:103587.
[2] Yao Y, Hsü K J. Origin of the Kunlun Mountains by arc-arc and arc-continent collisions[J]. Island Arc, 1994, 3(2):75-89.
doi: 10.1111/iar.1994.3.issue-2
[3] 唐洋, 付乐兵, 杨宝荣, 等. 东昆仑东段果洛龙洼脉状金矿床断裂构造控矿规律[J]. 地质科技情报, 2017, 36(2):160-167.
Tang Y, Fu L B, Yang B R, et al. Ore controlling regularities of fault in the Guoluolongwa lode gold deposit,east segment of eastern Kunlun orogen[J]. Geological Science and Technology Information, 2017, 36(2):160-167.
[4] Zhao X, Fu L B, Wei J H, et al. Generation and structural modification of the giant Kengdenongshe VMS type Au-Ag-Pb-Zn polymetallic deposit in the east Kunlun orogen,East Tethys:Constraints from geology,fluid inclusions,noble gas and stable isotopes[J]. Ore Geology Reviews, 2021, 131:104041.
doi: 10.1016/j.oregeorev.2021.104041
[5] 张萱颖. 青海省都兰县德龙地区矿床特征及靶区优选[D]. 北京: 中国地质大学(北京), 2016.
Zhang X Y. Geological characteristics and target selection of the Delong gold deposit, Dulan County,Qinghai province[D]. Beijing: China University of Geosciences(Beijing), 2016.
[6] 李文君, 王克铭, 张里斌, 等. 青海省都兰县德龙地区金矿地质特征与找矿标志[J]. 中国锰业, 2019, 37(5):84-86.
Li W J, Wang K M, Zhang L B, et al. Geological characteristics and prospecting indicators of gold deposits in Delong area Dulan County,Qinghai Province[J]. China’s Manganese Industry, 2019, 37(5):84-86.
[7] 周红智, 徐崇文, 张松涛, 等. 青海都兰沟里金矿整装勘查区1∶100 000地质矿产数据集[J]. 中国地质, 2019, 46(s1):93-104.
Zhou H Z, Xu C W, Zhang S T, et al. The 1∶100 000 mineralogical dataset of the Gouli gold deposit integrated exploration area in Dulan County,Qinghai Province[J]. Geology in China, 2019, 46(s1):93-104.
[8] 张萱颖, 王晓云, 秦宝民, 等. 激电中梯及音频大地电磁测深法在青海德龙金矿床的应用[J]. 矿产勘查, 2018, 9(3):470-476.
Zhang X Y, Wang X Y, Qin B M, et al. Application of IP intermediate gradient survey and controlled source audio frequency magnetotellurice (CSAMT) in Delong gold deposit,Qinghai[J]. Mineral Exploration, 2018, 9(3):470-476.
[9] 郭帮杰, 潘蔚, 张闯, 等. 基于遥感技术沙特阿拉伯地区钙结岩型铀矿成矿要素识别及潜力评价[J]. 自然资源遥感, 2022, 34(4):299-306.doi:10.6046/zrzyyg.2021373.
Guo B J, Pan W, Zhang C, et al. Remote sensing-based identification and potential evaluation of the mineralization elements of calcrete-hosted uranium deposits in Saudi Arabia[J]. Remote Sensing for Natural Resources, 2022, 34(4):299-306.doi:10.6046/zrzyyg.2021373.
[10] 李根军, 杨雪松, 张兴, 等. ZY1-02D高光谱数据在地质矿产调查中的应用与分析[J]. 国土资源遥感, 2021, 33(2):134-140.doi:10.6046/gtzyyg.2020190.
Li G J, Yang X S, Zhang X, et al. Application and analysis of ZY1-02D hyperspectral data in geological and mineral survey[J]. Remote Sensing for Land and Resources, 2021, 33(2):134-140.doi:10.6046/gtzyyg.2020190.
[11] 王瑞军, 张春雷, 孙永彬, 等. 高光谱在甘肃红山多金属找矿模型构建中的应用[J]. 国土资源遥感, 2020, 32(3):222-231.doi:10.6046/gtzyyg.2020.03.29.
Wang R J, Zhang C L, Sun Y B, et al. Application of hyperspectral spectroscopy to constructing polymetallic prospecting model in Hongshan,Gansu Province[J]. Remote Sensing for Land and Resources, 2020, 32(3):222-231.doi:10.6046/gtzyyg.2020.03.29.
[12] 刘建宇, 陈玲, 李伟, 等. 基于ASTER数据韧性剪切带型金矿蚀变信息提取方法优化[J]. 国土资源遥感, 2019, 31(1):229-236.doi:10.6046/gtzyyg.2019.01.30.
Liu J Y, Chen L, Li W, et al. An improved method for extracting alteration related to the ductile shear zone type gold deposits using ASTER data[J]. Remote Sensing for Land and Resources, 2019, 31(1):229-236.doi:10.6046/gtzyyg.2019.01.30.
[13] 魏英娟, 刘欢. 北衙金矿床遥感矿化蚀变信息提取及找矿预测[J]. 自然资源遥感, 2021, 33(3):156-163.doi:10.6046/zrzyyg.2020317.
Wei Y J, Liu H. Remote sensing-based mineralized alteration information extraction and prospecting prediction of the Beiya gold deposit,Yunnan province[J]. Remote Sensing for Natural Resources, 2021, 33(3):156-163.doi:10.6046/zrzyyg.2020317.
[14] 付丽华, 张策. 基于高分遥感数据的西藏荣勒地区控矿信息提取[J]. 国土资源遥感, 2020, 32(1):98-105.doi:10.6046/gtzyyg.2020.01.14.
Fu L H, Zhang C. Study of ore control information in Rongle area of Tibet based on high resolution remote sensing data[J]. Remote Sensing for Land and Resources, 2020, 32(1):98-105.doi:10.6046/gtzyyg.2020.01.14.
[15] 王烜, 王海鹏, 王然, 等. 基于GF2号与Landsat8数据融合的遥感图像地质解译——以1∶5万瓦房店市幅为例[J]. 地质论评, 2019, 65(4):918-928.
Wang X, Wang H P, Wang R, et al. Geological interpretation of remote sensing images based on data fusion of GF2 and Landsat8:A case study of the Wafangdian 1∶50 000 quadrangle map[J]. Geological Review, 2019, 65(4):918-928.
[16] 张微, 金谋顺, 张少鹏, 等. 高分遥感卫星数据在东昆仑成矿带找矿预测中的应用[J]. 国土资源遥感, 2016, 28(2):112-119.doi:10.6046/gtzyyg.2016.02.18.
Zhang W, Jin M S, Zhang S P, et al. Application of high resolution remote sensing data to ore-prospecting prediction in East Kunlun metallogenic belt[J]. Remote Sensing for Land and Resources, 2016, 28(2):112-119.doi:10.6046/gtzyyg.2016.02.18.
[17] Porwal A, González-Álvarez I. Introduction to special issue on geologic remote sensing[J]. Ore Geology Reviews, 2019, 105:216-222.
doi: 10.1016/j.oregeorev.2018.12.001
[18] 王润生, 甘甫平, 闫柏琨, 等. 高光谱矿物填图技术与应用研究[J]. 国土资源遥感, 2010, 22(1):1-13.doi:10.6046/gtzyyg.2010.01.01.
Wang R S, Gan F P, Yan B K, et al. Hyperspectral mineral mapping and its application[J]. Remote Sensing for Land and Resources, 2010, 22(1):1-13.doi:10.6046/gtzyyg.2010.01.01.
[19] 刘刚. 东昆仑五龙沟金矿围岩蚀变的遥感识别[J]. 国土资源遥感, 2002, 14(4):60-62.doi:10.6046/gtzyyg.2002.04.13.
Liu G. Remote sensing extraction of alteration information related to the Wulonggou gold deposit,East Kunlun Mountains[J]. Remote Sensing for Land and Resources, 2002, 14(4):60-62.doi:10.6046/gtzyyg.2002.04.13.
[20] 张廷斌, 钟康惠, 易桂花, 等. 东昆仑五龙沟金矿集中区遥感地质信息提取与找矿预测[J]. 地质与勘探, 2009, 45(4):444-449.
Zhang T B, Zhong K H, Yi G H, et al. The extraction of remote sensing geological information and metallogeneic prediction of gold mineralized concentrate district in Wulonggou,East Kunlun Mountains[J]. Geology and Exploration, 2009, 45(4):444-449.
[21] 张玉君, 姚佛军. 应用多光谱ASTER数据对ETM遥感异常的定性判别研究-——以东昆仑五龙沟为例[J]. 岩石学报, 2009, 25(4):963-970.
Zhang Y J, Yao F J. Application study of multi-spectral ASTER data for determination of ETM remote sensing anomaly property:Taking Wulonggou region of eastern Kunlun Mountain range as example[J]. Acta Petrologica Sinica, 2009, 25(4):963-970.
[22] 吴浩, 徐元进, 范高晶, 等. 奇异值分解在ETM+遥感蚀变信息提取中的应用——以青海省五龙沟金矿勘查区为例[J]. 地理与地理信息科学, 2016, 32(2):40-45.
Wu H, Xu Y J, Fan G J, et al. Using ETM+ data for extraction of alteration information based on singular value decomposition:A case study of Wulonggou gold deposit,Qinghai[J]. Geography and Geo-Information Science, 2016, 32(2):40-45.
[23] 易桂花, 张廷斌, 倪师军, 等. 五龙沟金矿集中区化探异常与遥感蚀变异常的综合分析[J]. 中国矿业, 2010, 19(12):104-106.
Yi G H, Zhang T B, Ni S J, et al. Comprehensive analysis of geochemical anomaly and remote sensing alteration of gold mineralized concentrate district in Wulonggou area[J]. China Mining Magazine, 2010, 19(12):104-106.
[24] 杨经绥, 许志琴, 马昌前, 等. 复合造山作用和中国中央造山带的科学问题[J]. 中国地质, 2010, 37(1):1-11.
Yang J S, Xu Z Q, Ma C Q, et al. Compound orogeny and scientific problems concerning the Central Orogenic Belt of China[J]. Geology in China, 2010, 37(1):1-11.
[25] 孙攀, 董玉森, 陈伟涛, 等. 高分二号卫星影像融合及质量评价[J]. 国土资源遥感, 2016, 28(4):108-113.doi:10.6046/gtzyyg.2016.04.17.
Sun P, Dong Y S, Chen W T, et al. Research on fusion of GF-2 imagery and quality evaluation[J]. Remote Sensing for Land and Resources, 2016, 28(4):108-113.doi:10.6046/gtzyyg.2016.04.17.
[26] 郝建亭, 杨武年, 李玉霞, 等. 基于FLAASH的多光谱影像大气校正应用研究[J]. 遥感信息, 2008, 23(1):78-81.
Hao J T, Yang W N, Li Y X, et al. Atmospheric correction of multispectral imagery ASTER[J]. Remote Sensing Information, 2008, 23(1):78-81.
[27] 夏清, 杨武年, 赵妮. 青藏大陆北缘盆山耦合带库斯拉甫地区遥感蚀变信息提取[J]. 国土资源遥感, 2014, 26(1):127-131.doi:10.6046/gtzyyg.2014.01.22.
Xia Q, Yang W N, Zhao N. Extraction of remote sensing alteration information of Kosrap area in northern basin-mountain coupling zone of Tibetan Plateau[J]. Remote Sensing for Land and Resources, 2014, 26(1):127-131.doi:10.6046/gtzyyg.2014.01.22.
[28] 徐涵秋, 张铁军. ASTER与Landsat ETM+植被指数的交互比较[J]. 光谱学与光谱分析, 2011, 31(7):1902-1907.
Xu H Q, Zhang T J. Cross comparison of ASTER and Landsat ETM+multispectral measurements for NDVI and SAVI vegetation indices[J]. Spectroscopy and Spectral Analysis, 2011, 31(7):1902-1907.
[29] Chavez P S, Berlin G L, Sowers L B. Statistical method for selecting Landsat MSS ratios[J]. Journal of Applied Photographic Engineering, 1982, 8(1):23-30.
[30] 张焜, 李宗仁, 马世斌. 基于ZY-102C星数据的遥感地质解译——以塔吉克斯坦帕米尔地区为例[J]. 国土资源遥感, 2015, 27(3):144-153.doi:10.6046/gtzyyg.2015.03.23.
Zhang K, Li Z R, Ma S B. Remote sensing geological interpretation based on ZY-1 02C satellite images:A case study of Pamir area,Tajikistan[J]. Remote Sensing for Land and Resources, 2015, 27(3):144-153.doi:10.6046/gtzyyg.2015.03.23.
[31] Chernicoff C J, Richards J P, Zappettini E O. Crustal lineament control on magmatism and mineralization in northwestern Argentina:Geological,geophysical,and remote sensing evidence[J]. Ore Geology Reviews, 2002, 21(3/4):127-155.
doi: 10.1016/S0169-1368(02)00087-2
[32] 徐俊龙, 温兴平, 余敏, 等. 基于地质统计学原理的会泽铅锌矿遥感线性构造解析[J]. 地质与勘探, 2014, 50(4):763-771.
Xu J L, Wen X P, Yu M, et al. An analysis of linear structures in the Huize lead-zinc mine based on remote sensing images using the principle of geostatistics[J]. Geology and Exploration, 2014, 50(4):763-771.
[33] 张旺生, 杨巍然. 北祁连山西段遥感构造定量分析与金铜矿化关系[J]. 地质科技情报, 1997, 16(s1):66-68.
Zhang W S, Yang W R. Quantitative analysis of remote sensing structure and its relation to Au-Cu mineralization in the Western Part of North Qilian Mountains[J]. Bulletin of Geological Science and Technology. 1997, 16(s1):66-68.
[34] 陈加杰. 东昆仑造山带东端沟里地区构造岩浆演化与金成矿[D]. 武汉: 中国地质大学(武汉), 2018.
Chen J J. Paleozoic-Mesozoic tectono-magmatic evolution and gold mineralization in Gouli area,eastend of East Kunlun Orogen[D]. Wuhan: China University of Geoscience (Wuhan), 2018.
[35] 魏俊浩. 初论成矿场与矿产勘查意义[J]. 地质科技通报, 2020, 39(1):114-129.
Wei J H. Preliminary discussion on the theory of ore-forming field and its significant role for mineral exploration[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 114-129.
[36] 王润生, 熊盛青, 聂洪峰, 等. 遥感地质勘查技术与应用研究[J]. 地质学报, 2011, 85(11):1699-1743.
Wang R S, Xiong S Q, Nie H F, et al. Remote sensing technology and its application in geological exploration[J]. Acta Geologica Sinica, 2011, 85(11):1699-1743.
[37] 刁海, 张达, 狄永军, 等. 基于主成分分析和分形模型的ASTER蚀变异常信息提取[J]. 国土资源遥感, 2011, 23(2):75-80.doi:10.6046/gtzyyg.2011.02.14.
Diao H, Zhang D, Di Y J, et al. The extraction of anomalies from ASTER data based on principal component analysis and fractal model[J]. Remote Sensing for Land and Resources, 2011, 23(2):75-80.doi:10.6046/gtzyyg.2011.02.14.
[1] 梁锦涛, 陈超, 张自力, 刘志松. 一种融合指数与主成分分量的随机森林遥感图像分类方法[J]. 自然资源遥感, 2023, 35(3): 35-42.
[2] 马俊俊, 王春磊, 黄晓红. 基于ASTER数据的地表温度遥感反演与产品检验——以黑河流域为例[J]. 自然资源遥感, 2023, 35(1): 198-204.
[3] 伊尔潘·艾尼瓦尔, 买买提·沙吾提, 买合木提·巴拉提. 基于GF-2影像和Unet模型的棉花分布识别[J]. 自然资源遥感, 2022, 34(2): 242-250.
[4] 孙肖, 彭军还, 赵锋, 王晓阳, 吕洁, 张登峰. 基于空间统计学的高光谱遥感影像主成分选择方法[J]. 自然资源遥感, 2022, 34(2): 37-46.
[5] 秦大辉, 杨灵, 谌伦超, 段云飞, 贾宏亮, 李贞培, 马建琴. 基于多源数据的新疆干旱特征及干旱模型研究[J]. 自然资源遥感, 2022, 34(1): 151-157.
[6] 柳明星, 刘建红, 马敏飞, 蒋娅, 曾靖超. 基于GF-2 PMS影像和随机森林的甘肃临夏花椒树种植监测[J]. 自然资源遥感, 2022, 34(1): 218-229.
[7] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[8] 魏英娟, 刘欢. 北衙金矿床遥感矿化蚀变信息提取及找矿预测[J]. 自然资源遥感, 2021, 33(3): 156-163.
[9] 安健健, 孟庆岩, 胡蝶, 胡新礼, 杨健, 杨天梁. 基于Faster R-CNN的火电厂冷却塔检测及工作状态判定[J]. 国土资源遥感, 2021, 33(2): 93-99.
[10] 董天成, 杨肖, 李卉, 张志, 齐睿. 基于Faster R-CNN和MorphACWE模型的SAR图像高原湖泊提取[J]. 国土资源遥感, 2021, 33(1): 129-137.
[11] 陈震, 夏学齐, 陈建平. 土地生态质量遥感评价模型与主控因子研究——以广安市为例[J]. 国土资源遥感, 2021, 33(1): 191-198.
[12] 木哈代思·艾日肯, 张飞, 刘康, 阿依努尔·玉山江. 基于天宫二号及Landsat8城镇生态环境现状评价[J]. 国土资源遥感, 2020, 32(4): 209-218.
[13] 刘文雅, 岳安志, 季珏, 师卫华, 邓孺孺, 梁业恒, 熊龙海. 基于DeepLabv3+语义分割模型的GF-2影像城市绿地提取[J]. 国土资源遥感, 2020, 32(2): 120-129.
[14] 夏既胜, 马梦莹, 符钟壬. 基于GF-2遥感影像的机械性破损面提取方法[J]. 国土资源遥感, 2020, 32(2): 26-32.
[15] 冯林艳, 谭炳香, 王晓慧, 陈新云, 曾伟生, 戚曌. 基于分布函数的对象级森林变化快速检测[J]. 国土资源遥感, 2020, 32(2): 73-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发