Tectonic alteration information extraction and prospecting prediction for the Delong area of Qinghai Province based on GF-2 and ASTER data
WANG Yilong1,2(), WANG Ran1,2(), YAN Ziqing3, ZHANG Xinming3, LI Xiaolong3, XU Chongwen3
1. Liaoning Institute of Geological Exploration Co.,Ltd., Dalian 116100, China 2. Liaoning Province High-Resolution Observation System Application and Service Center of Geological Resources and Environmental, Dalian 116100, China 3. School of Earth Resources, China University of Geosciences(Wuhan), Wuhan 430074, China
The Delong area, located in the eastern segment of the Eastern Kunlun gold-polymetallic metallogenic belt in Qinghai, is recognized as an area with significant exploration potential. However, its remote geographical location and rugged terrain pose challenges to large-scale geochemical explorations and conventional geological surveys. Based on ASTER and GF-2 data, this study identified the linear and circular structures by analyzing the color tones, geometric structures, and textures of remote sensing images with varying resolutions. Through the spectral analysis of primary alteration minerals, this study extracted the information on ferrugination, Al-OH, and Mg-OH alterations from visible light to near-infrared bands and short-wave infrared bands of ASTER using the mask + principal component analysis technique. Then, this study established a remote sensing-based prospecting prediction model for gold deposits in the study area by combining geoscience information and field survey results and comprehensively analyzing the association between the tectonic alteration information derived from remote sensing image interpretation and the gold mineralization of the study area. Using the prediction model, this study delineated three prospective areas for mineral exploration. The field verification revealed several new gold ore bodies in the Delong prospective area. The results show that the integration of remote sensing data and GIS technology can effectively identify surface hydrothermal alterations and tectonic spatial structures. The integration can serve as a guide for subsequent prospecting prediction of the study area.
王艺龙, 王然, 严子清, 张新铭, 李笑龙, 徐崇文. 基于GF-2和ASTER数据青海德龙地区构造蚀变信息提取及找矿预测[J]. 自然资源遥感, 2024, 36(1): 217-226.
WANG Yilong, WANG Ran, YAN Ziqing, ZHANG Xinming, LI Xiaolong, XU Chongwen. Tectonic alteration information extraction and prospecting prediction for the Delong area of Qinghai Province based on GF-2 and ASTER data. Remote Sensing for Natural Resources, 2024, 36(1): 217-226.
Chen J J, Fu L B, Selby D, et al. Multiple episodes of gold mineralization in the East Kunlun Orogen,western Central Orogenic Belt,China:Constraints from Re-Os sulfide geochronology[J]. Ore Geo-logy Reviews, 2020, 123:103587.
[2]
Yao Y, Hsü K J. Origin of the Kunlun Mountains by arc-arc and arc-continent collisions[J]. Island Arc, 1994, 3(2):75-89.
doi: 10.1111/iar.1994.3.issue-2
Tang Y, Fu L B, Yang B R, et al. Ore controlling regularities of fault in the Guoluolongwa lode gold deposit,east segment of eastern Kunlun orogen[J]. Geological Science and Technology Information, 2017, 36(2):160-167.
[4]
Zhao X, Fu L B, Wei J H, et al. Generation and structural modification of the giant Kengdenongshe VMS type Au-Ag-Pb-Zn polymetallic deposit in the east Kunlun orogen,East Tethys:Constraints from geology,fluid inclusions,noble gas and stable isotopes[J]. Ore Geology Reviews, 2021, 131:104041.
doi: 10.1016/j.oregeorev.2021.104041
Zhang X Y. Geological characteristics and target selection of the Delong gold deposit, Dulan County,Qinghai province[D]. Beijing: China University of Geosciences(Beijing), 2016.
Li W J, Wang K M, Zhang L B, et al. Geological characteristics and prospecting indicators of gold deposits in Delong area Dulan County,Qinghai Province[J]. China’s Manganese Industry, 2019, 37(5):84-86.
Zhou H Z, Xu C W, Zhang S T, et al. The 1∶100 000 mineralogical dataset of the Gouli gold deposit integrated exploration area in Dulan County,Qinghai Province[J]. Geology in China, 2019, 46(s1):93-104.
Zhang X Y, Wang X Y, Qin B M, et al. Application of IP intermediate gradient survey and controlled source audio frequency magnetotellurice (CSAMT) in Delong gold deposit,Qinghai[J]. Mineral Exploration, 2018, 9(3):470-476.
Guo B J, Pan W, Zhang C, et al. Remote sensing-based identification and potential evaluation of the mineralization elements of calcrete-hosted uranium deposits in Saudi Arabia[J]. Remote Sensing for Natural Resources, 2022, 34(4):299-306.doi:10.6046/zrzyyg.2021373.
Li G J, Yang X S, Zhang X, et al. Application and analysis of ZY1-02D hyperspectral data in geological and mineral survey[J]. Remote Sensing for Land and Resources, 2021, 33(2):134-140.doi:10.6046/gtzyyg.2020190.
Wang R J, Zhang C L, Sun Y B, et al. Application of hyperspectral spectroscopy to constructing polymetallic prospecting model in Hongshan,Gansu Province[J]. Remote Sensing for Land and Resources, 2020, 32(3):222-231.doi:10.6046/gtzyyg.2020.03.29.
Liu J Y, Chen L, Li W, et al. An improved method for extracting alteration related to the ductile shear zone type gold deposits using ASTER data[J]. Remote Sensing for Land and Resources, 2019, 31(1):229-236.doi:10.6046/gtzyyg.2019.01.30.
Wei Y J, Liu H. Remote sensing-based mineralized alteration information extraction and prospecting prediction of the Beiya gold deposit,Yunnan province[J]. Remote Sensing for Natural Resources, 2021, 33(3):156-163.doi:10.6046/zrzyyg.2020317.
Fu L H, Zhang C. Study of ore control information in Rongle area of Tibet based on high resolution remote sensing data[J]. Remote Sensing for Land and Resources, 2020, 32(1):98-105.doi:10.6046/gtzyyg.2020.01.14.
Wang X, Wang H P, Wang R, et al. Geological interpretation of remote sensing images based on data fusion of GF2 and Landsat8:A case study of the Wafangdian 1∶50 000 quadrangle map[J]. Geological Review, 2019, 65(4):918-928.
Zhang W, Jin M S, Zhang S P, et al. Application of high resolution remote sensing data to ore-prospecting prediction in East Kunlun metallogenic belt[J]. Remote Sensing for Land and Resources, 2016, 28(2):112-119.doi:10.6046/gtzyyg.2016.02.18.
[17]
Porwal A, González-Álvarez I. Introduction to special issue on geologic remote sensing[J]. Ore Geology Reviews, 2019, 105:216-222.
doi: 10.1016/j.oregeorev.2018.12.001
Wang R S, Gan F P, Yan B K, et al. Hyperspectral mineral mapping and its application[J]. Remote Sensing for Land and Resources, 2010, 22(1):1-13.doi:10.6046/gtzyyg.2010.01.01.
Liu G. Remote sensing extraction of alteration information related to the Wulonggou gold deposit,East Kunlun Mountains[J]. Remote Sensing for Land and Resources, 2002, 14(4):60-62.doi:10.6046/gtzyyg.2002.04.13.
Zhang T B, Zhong K H, Yi G H, et al. The extraction of remote sensing geological information and metallogeneic prediction of gold mineralized concentrate district in Wulonggou,East Kunlun Mountains[J]. Geology and Exploration, 2009, 45(4):444-449.
Zhang Y J, Yao F J. Application study of multi-spectral ASTER data for determination of ETM remote sensing anomaly property:Taking Wulonggou region of eastern Kunlun Mountain range as example[J]. Acta Petrologica Sinica, 2009, 25(4):963-970.
Wu H, Xu Y J, Fan G J, et al. Using ETM+ data for extraction of alteration information based on singular value decomposition:A case study of Wulonggou gold deposit,Qinghai[J]. Geography and Geo-Information Science, 2016, 32(2):40-45.
Yi G H, Zhang T B, Ni S J, et al. Comprehensive analysis of geochemical anomaly and remote sensing alteration of gold mineralized concentrate district in Wulonggou area[J]. China Mining Magazine, 2010, 19(12):104-106.
Yang J S, Xu Z Q, Ma C Q, et al. Compound orogeny and scientific problems concerning the Central Orogenic Belt of China[J]. Geology in China, 2010, 37(1):1-11.
Sun P, Dong Y S, Chen W T, et al. Research on fusion of GF-2 imagery and quality evaluation[J]. Remote Sensing for Land and Resources, 2016, 28(4):108-113.doi:10.6046/gtzyyg.2016.04.17.
Xia Q, Yang W N, Zhao N. Extraction of remote sensing alteration information of Kosrap area in northern basin-mountain coupling zone of Tibetan Plateau[J]. Remote Sensing for Land and Resources, 2014, 26(1):127-131.doi:10.6046/gtzyyg.2014.01.22.
Xu H Q, Zhang T J. Cross comparison of ASTER and Landsat ETM+multispectral measurements for NDVI and SAVI vegetation indices[J]. Spectroscopy and Spectral Analysis, 2011, 31(7):1902-1907.
[29]
Chavez P S, Berlin G L, Sowers L B. Statistical method for selecting Landsat MSS ratios[J]. Journal of Applied Photographic Engineering, 1982, 8(1):23-30.
Zhang K, Li Z R, Ma S B. Remote sensing geological interpretation based on ZY-1 02C satellite images:A case study of Pamir area,Tajikistan[J]. Remote Sensing for Land and Resources, 2015, 27(3):144-153.doi:10.6046/gtzyyg.2015.03.23.
[31]
Chernicoff C J, Richards J P, Zappettini E O. Crustal lineament control on magmatism and mineralization in northwestern Argentina:Geological,geophysical,and remote sensing evidence[J]. Ore Geology Reviews, 2002, 21(3/4):127-155.
doi: 10.1016/S0169-1368(02)00087-2
Xu J L, Wen X P, Yu M, et al. An analysis of linear structures in the Huize lead-zinc mine based on remote sensing images using the principle of geostatistics[J]. Geology and Exploration, 2014, 50(4):763-771.
Zhang W S, Yang W R. Quantitative analysis of remote sensing structure and its relation to Au-Cu mineralization in the Western Part of North Qilian Mountains[J]. Bulletin of Geological Science and Technology. 1997, 16(s1):66-68.
Chen J J. Paleozoic-Mesozoic tectono-magmatic evolution and gold mineralization in Gouli area,eastend of East Kunlun Orogen[D]. Wuhan: China University of Geoscience (Wuhan), 2018.
Wei J H. Preliminary discussion on the theory of ore-forming field and its significant role for mineral exploration[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 114-129.
Wang R S, Xiong S Q, Nie H F, et al. Remote sensing technology and its application in geological exploration[J]. Acta Geologica Sinica, 2011, 85(11):1699-1743.
Diao H, Zhang D, Di Y J, et al. The extraction of anomalies from ASTER data based on principal component analysis and fractal model[J]. Remote Sensing for Land and Resources, 2011, 23(2):75-80.doi:10.6046/gtzyyg.2011.02.14.