Please wait a minute...
 
国土资源遥感  2015, Vol. 27 Issue (3): 84-91    DOI: 10.6046/gtzyyg.2015.03.15
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于MODIS雪盖数据的北疆雪深多元非线性回归克里金插值
许剑辉1, 舒红1, 李杨2
1. 武汉大学测绘遥感信息工程国家重点实验室, 武汉 430079;
2. 中国气象局乌鲁木齐 沙漠气象研究所, 乌鲁木齐 830002
Mapping of monthly mean snow depth in Northern Xinjiang using a multivariate nonlinear regression Kriging model based on MODIS snow cover data
XU Jianhui1, SHU Hong1, LI Yang2
1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China;
2. Institute of Desert Meteorology, CMA, Urumqi 830002, China
全文: PDF(6891 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 为了提高北疆地区雪深时空分布监测的准确性,以该区域48个气象站点2006年12月-2007年1月的月平均雪深观测数据为基础,通过分析月均雪深空间自相关性及其与经纬度、高程的相关性,结合MODIS雪盖数据构建了多元非线性回归克里金插值方法,插值获得了北疆地区较高精度的雪深空间分布数据。将插值雪深数据与普通克里金插值法、考虑高程为辅助变量的协同克里金插值法的预测结果进行比较,结果表明: ①相对普通克里金和协同克里金方法,多元非线性回归克里金法的12月份雪深预测精度分别提高了15.14%和9.54%,1月份的提高了4.8%和6.7%; ②由于充分利用了经纬度和地形信息,多元非线性回归克里金法的雪深预测结果可提供更多细节信息; ③预测结果客观地表达了雪深随经纬度和地形变化的趋势,反映了积雪深度的空间变异性; ④基于不显著相关的协变量高程的协同克里金插值法预测的雪深数据精度劣于普通克里金插值法的预测结果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏腾飞
李洪玉
屈忠义
关键词 高分辨率遥感图像(HRI)图像分割光谱合并边界合并道路提取    
Abstract:To accurately map the spatial-temporal variability of snow depth in Northern Xinjiang, the authors analyzed the spatial autocorrelation of monthly mean snow depths of 48 meteorological stations from December 2006 to January 2007, and investigated the relationship between snow depth, longitude, latitude and elevation. A multivariate nonlinear regression Kriging (MNRK) model based on the MODIS snow cover data is proposed to predict the spatial patterns of monthly mean snow depth. Relative to the ordinary Kriging (OK) and CoKriging with elevation (CoK) as covariate, the relative root mean square error(RRMSE) of predicted snow depth decreased by 15.14% and 9.54% in December, and decreased by 4.8% and 6.7% in January. The comparative results show that the MNRK method outperforms the other two methods. Integrating more information related to snow depth, the MNRK method is more efficient in capturing more spatial details of snow depth which varies with longitude, latitude and elevation. The CoK method without significantly correlated covariate produces worse results than the OK method.
Key wordshigh-resolution remote sensing image(HRI)    image segmentation    spectral mergence    edge mergence    road extraction
收稿日期: 2014-05-20      出版日期: 2015-07-23
:  TP751  
基金资助:民政部减灾和应急工程重点实验室/资助机构开放基金项目"北疆暴雪监测中多源积雪数据同化研究"(编号: LDRERE20120203)、国家自然科学基金项目"时空交互的统计建模"(编号: 41171313)及中央级公益性科研院所基本科研业务项目"基于多源数据融合的阿勒泰地区积雪深度算法研究"(编号: IDM201206)共同资助。
通讯作者: 舒红(1970-),男,教授,主要从事时空统计、数据同化和环境变化遥感研究。Email:shu_hong@whu.edu.cn。
作者简介: 许剑辉(1984-),男,博士研究生,主要从事时空统计与数据同化研究。Email:xujianhui306@163.com。
引用本文:   
许剑辉, 舒红, 李杨. 基于MODIS雪盖数据的北疆雪深多元非线性回归克里金插值[J]. 国土资源遥感, 2015, 27(3): 84-91.
XU Jianhui, SHU Hong, LI Yang. Mapping of monthly mean snow depth in Northern Xinjiang using a multivariate nonlinear regression Kriging model based on MODIS snow cover data. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 84-91.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2015.03.15      或      https://www.gtzyyg.com/CN/Y2015/V27/I3/84
[1] 李江风.新疆气候[M].北京:气象出版社,1991. Li J F.Climate of Xinjiang[M].Beijing:China Meteorological Press,1991.
[2] Huang X D,Liang T G,Zhang X T,et al.Validation of MODIS snow cover products using Landsat and ground measurements during the 2001-2005 snow seasons over northern Xinjiang,China[J].International Journal of Remote Sensing,2011,32(1):133-152.
[3] Liang T G,Huang X D,Wu C X,et al.An application of MODIS data to snow cover monitoring in a pastoral area:A case study in Northern Xinjiang,China[J].Remote Sensing of Environment,2008,112(4):1514-1526.
[4] 侯小刚.基于多源数据的阿勒泰地区积雪深度研究[D].新疆:新疆师范大学,2013. Hou X G.Study of Snow Depth Based on Multi-Source Data About Aletai Area[D].Xinjiang:Xinjiang Normal University,2013.
[5] 白淑英,史建桥,沈渭寿,等.近30年西藏雪深时空变化及其对气候变化的响应[J].国土资源遥感,2014,26(1):144-151.doi:10.6046/gtzyyg.2014.01.25. Bai S Y,Shi J Q,Shen W S,et al.Spatial-temporal variation of snow depth in Tibet and its response to climatic change in the past 30 years[J].Remote Sensing for Land and Resources,2014,26(1):144-151.doi:10.6046/gtzyyg.2014.01.25.
[6] Wang X W,Xie H J,Liang T G.Evaluation of MODIS snow cover and cloud mask and its application in Northern Xinjiang,China[J].Remote Sensing of Environment,2008,112(4):1497-1513.
[7] 卢新玉,王秀琴,崔彩霞,等.基于AMSR-E的北疆地区积雪深度反演[J].冰川冻土,2013,35(1):40-47. Lu X Y,Wang X Q,Cui C X,et al.Snow depth retrieval based on AMSR-E data in Northern Xinjiang Region,China[J].Journal of Glaciology and Geocryology,2013,35(1):40-47.
[8] Dai L Y,Che T,Wang J,et al.Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang,China[J].Remote Sensing of Environment,2012,127:14-29.
[9] 徐倩,刘志辉,房世峰.融雪期积雪深度高光谱反演方法研究[J].光谱学与光谱分析,2013,33(7):1927-1931. Xu Q,Liu Z H,Fang S F.Retrieval method for estimating snow depth using hyperspectral data in snowmelt period[J].Spectroscopy and Spectral Analysis,2013,33(7):1927-1931.
[10] McCreight J L,Slater A G,Marshall H P,et al.Inference and uncertainty of snow depth spatial distribution at the kilometre scale in the Colorado Rocky Mountains:The effects of sample size,random sampling,predictor quality,and validation procedures[J].Hydrological Processes,2014,28(3):933-957.
[11] Erxleben J,Elder K,Davis R.Comparison of spatial interpolation methods for estimating snow distribution in the Colorado Rocky Mountains[J].Hydrological Processes,2002,16(18):3627-3649.
[12] Balk B,Elder K.Combining binary decision tree and geostatistical methods to estimate snow distribution in a mountain watershed[J].Water Resources Research,2000,36(1):13-26.
[13] López-Moreno J I,Nogués-Bravo D.A generalized additive model for the spatial distribution of snowpack in the Spanish Pyrenees[J].Hydrological Processes,2005,19(16):3167-3176.
[14] 刘艳,阮惠华,张璞,等.利用MODIS数据研究天山北麓Kriging雪深插值[J].武汉大学学报:信息科学版,2012,37(4):403-405. Liu Y,Ruan H H,Zhang P,et al.Kriging interpolation of snow depth at the north of Tianshan Mountains assisted by MODIS data[J].Geomatics and Information Science of Wuhan University,2012,37(4):403-405.
[15] 冯学智,柏延臣,史正涛,等.北疆地区积雪深度的克里格内插估计[J].冰川冻土,2000,22(4):358-361. Feng X Z,Bo Y C,Shi Z T,et al.Snow depth in North Xinjiang region estimated by Kriging interpolation[J].Journal of Glaciology and Geocryology,2000,22(4):358-361.
[16] Hengl T,Heuvelink G B M,Stein A.A generic framework for spatial prediction of soil variables based on regression-Kriging[J].Geoderma,2004,120(1/2):75-93.
[17] 崔彩霞,杨青,王胜利.1960-2003年新疆山区与平原积雪长期变化的对比分析[J].冰川冻土,2005,27(4):486-490. Cui C X,Yang Q,Wang S L.Comparison analysis of the long-term variations of snow cover between mountain and plain areas in Xinjiang region from 1960 to 2003[J].Journal of Glaciology and Geocryology,2005,27(4):486-490.
[18] Getis A,Ord J K.The analysis of spatial association by use of distance statistics[J].Geographical Analysis,1992,24(3):189-206.
[19] Paul Hiemstra. Automatic interpolation package[EB/OL].(2013-08-29)[2014-05-20].http://cran.r-project.org/web/packages/automap/automap.pdf.
[20] 王秋香,魏文寿,王金明.新疆北疆最大积雪深度EOF展开场的时间变化规律[J].冰川冻土,2008,30(2):244-249. Wang Q X,Wei W S,Wang J M.Temporal variation of the maximum snow cover depth in north Xinjiang derive from EOF[J].Journal of Glaciology and Geocryology,2008,30(2):244-249.
[21] 杨青,崔彩霞,孙除荣,等.1959-2003年中国天山积雪的变化[J].气候变化研究进展,2007,3(2):80-84. Yang Q,Cui C X,Sun C R,et al.Snow cover variation during 1959-2003 in Tianshan Mountains,China[J].Advances in Climate Change Research,2007,3(2):80-84.
[1] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[2] 王碧晴, 韩文泉, 许驰. 基于图像分割和NDVI时间序列曲线分类模型的冬小麦种植区域识别与提取[J]. 国土资源遥感, 2020, 32(2): 219-225.
[3] 于博, 张军军, 李春庚, 安居白. 图像语义分割辅助的车载激光点云道路提取方法[J]. 国土资源遥感, 2020, 32(1): 66-74.
[4] 张永梅, 孙海燕, 胥玉龙. 一种改进的基于超像素的多光谱图像分割方法[J]. 国土资源遥感, 2019, 31(1): 58-64.
[5] 吕野, 胡翔云. 利用增量式马尔科夫随机场分割提取高空间分辨率遥感影像道路[J]. 国土资源遥感, 2018, 30(3): 76-82.
[6] 赵庆平. 朗伯定律的宽观测带SAR海冰图像分割[J]. 国土资源遥感, 2017, 29(2): 67-71.
[7] 滑永春, 李增元, 高志海, 郭中. 基于GF-2民勤县白刺包提取技术[J]. 国土资源遥感, 2017, 29(1): 71-77.
[8] 张涛, 杨晓梅, 童立强, 贺鹏. 基于多尺度图像库的遥感影像分割参数优选方法[J]. 国土资源遥感, 2016, 28(4): 59-63.
[9] 苏腾飞, 李洪玉, 屈忠义. 高分辨率遥感图像道路分割算法[J]. 国土资源遥感, 2015, 27(3): 1-6.
[10] 徐南, 周绍光. 基于图像分块和线段投票的遥感道路边缘线提取[J]. 国土资源遥感, 2015, 27(1): 55-61.
[11] 徐宏根, 宋妍. 顾及阴影信息的高分辨率遥感图像变化检测方法[J]. 国土资源遥感, 2013, 25(4): 16-21.
[12] 曾发明, 杨波, 吴德文, 唐攀科, 张建国, 张鸿键. 基于Canny边缘检测算子的矿区道路提取[J]. 国土资源遥感, 2013, 25(4): 72-78.
[13] 蔡红玥, 姚国清. 基于分水岭算法的高分遥感图像道路提取优化方法[J]. 国土资源遥感, 2013, 25(3): 25-29.
[14] 薛峭, 赵书河. 基于最小核值相似区算法的高分辨率遥感图像分割方法[J]. 国土资源遥感, 2011, 23(4): 37-41.
[15] 董占杰, 毛政元. 基于道路绿地特征的遥感影像道路信息提取方法研究[J]. 国土资源遥感, 2011, 23(2): 43-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发