Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (1): 53-60    DOI: 10.6046/zrzyyg.2021089
     技术方法 本期目录 | 过刊浏览 | 高级检索 |
一种超像素上Parzen窗密度估计的遥感图像分割方法
张大明1,2(), 张学勇1,2, 李璐1, 刘华勇1
1.安徽建筑大学数理学院,合肥 230022
2.安徽省建筑声环境重点实验室,合肥 230601
Remote sensing image segmentation based on Parzen window density estimation of super-pixels
ZHANG Daming1,2(), ZHANG Xueyong1,2, LI Lu1, LIU Huayong1
1. School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230022, China
2. Key Laboratory of Architectural Acoustic Environment of Anhui Higher Education Institutes, Hefei 230601, China
全文: PDF(5140 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

图像分割是高分辨率遥感图像分析中的关键步骤,对信息提取精度起到重要作用。为提高传统基于像素的遥感图像分割算法性能,提出一种在超像素上进行Parzen窗密度估计的分割算法。包括超像素初始分割、特征测量、密度估计并重新聚类3个主要步骤。在超像素初始分割阶段,采用简单线性迭代聚类算法将图像进行超像素粗分割,并将每个超像素块标记为图结构中的一个顶点; 然后测量每个超像素块的Gabor纹理特征,构建高维特征向量并计算纹理间的相似度,作为图中连接2个顶点的边的权值,并在该图的最小生成树上计算2个顶点之间的距离; 接着将此距离用于Parzen窗,估计每个顶点的密度,并重新聚类得到最终结果。采用多幅多光谱高分辨遥感图像验证本文提出的算法,基于目视判别以及基于准确率和召回率的定量评价,将该方法与其他分割算法的结果进行比较,验证了提出算法的有效性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张大明
张学勇
李璐
刘华勇
关键词 多光谱遥感图像Parzen窗密度估计超像素最小生成树图像分割区域合并    
Abstract

Image segmentation is a key step in the analysis of high-resolution remote sensing images and plays an important role in improving information extraction accuracy. To improve the performance of traditional pixel-based image segmentation methods, this study proposed a new algorithm based on Parzen window density estimation of super-pixel blocks. The new algorithm includes three main steps, namely super-pixel initial segmentation, feature measurement, and density estimation and re-clustering. In the first step, an image is coarsely divided using the simple linear iterative clustering (SLIC) algorithm, and each super-pixel block is marked as a node in the graph structure of the image. In the second step, the Gabor texture features of each super-pixel block are measured to construct high-dimension feature vectors. Meanwhile, the similarity of the image textures is calculated as the weight of the edge connecting two nodes in the graph. Then, the distance between the two nodes is calculated on the minimum spanning tree (MST) of the graph. In the third step, the calculated distance is used for Parzen window density estimation of each node, and re-clustering of the density values is conducted to obtain the final results. In the experiments, multiple multispectral high-resolution remote sensing images were adopted to verify the algorithm proposed in this study. Using visual discrimination and the quantitative evaluation based on precesion rate and recall rate, the segmentation results of the algorithm proposed in this study were compared with those of other algorithms. The experiments verified that the algorithm proposed in this study is effective.

Key wordsmultispectral remote sensing image    Parzen window density estimation    super-pixel    minimum spanning tree    image segmentation    region merging
收稿日期: 2021-03-26      出版日期: 2022-03-14
ZTFLH:  TP391  
基金资助:国家自然科学基金项目“基于压平和3-DDIC的角膜生物力学性能活体检测方法及技术研究”编号(61471003);安徽省高校自然科学基金项目“几何造型理论及其方法研究”编号(KJ2018A0518);“城市建筑声环境设计及质量评价方法研究”编号(KJ2020A0484);“基于多粒度语义评价的群决策应用研究”编号(KJ2019JD17);安徽省重点实验室开放课题“建筑声环境设计、监测与评估有关理论及关键技术研究”编号共同资助。(IBES2018KF04)
作者简介: 张大明(1976-)男,博士,副教授,主要研究方向为遥感信息处理和模式识别。Email: zhang_daming@aliyun.com
引用本文:   
张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021089      或      https://www.gtzyyg.com/CN/Y2022/V34/I1/53
Fig.1  图的最小生成树上Parzen窗密度估计的聚类示意图
Fig.2  提出的多光谱遥感图像分割算法流程
Fig.3  实验1的原始图像
参数 S
5 20 50
预分割
h=0.5
h=5
h=20
h=50
Tab.1  
参数S 5 20 50
平均计算时间 58.487 6 19.783 4 14.347 2
Tab.2  实验1中参数S的选取对计算时间的影响
h S=5 S=20 S=50
Precision Recall Precision Recall Precision Recall
0.5 0.913 4 0.927 2 0.914 6 0.958 6 0.793 4 0.828 3
5 0.917 2 0.957 3 0.916 2 0.959 5 0.814 1 0.841 3
20 0.904 6 0.921 7 0.920 7 0.938 6 0.819 2 0.839 6
50 0.831 5 0.874 6 0.742 8 0.789 1 0.732 5 0.749 3
Tab.3  实验1的定量评价
Fig.4  实验2的分割结果
Fig.5  实验3的分割结果
指标 FNEA 本文方法
50 150 S=5 S=20 S=30
Precision 0.782 9 0.798 9 0.783 6 0.879 8 0.884 2
Recall 0.879 6 0.882 7 0.870 7 0.936 8 0.937 1
Tab.4  实验2定量评价

指标
FNEA 本文方法
150 200 S=5 S=20 S-30
Precision 0.841 1 0.856 3 0.897 2 0.903 7 0.912 7
Recall 0.884 3 0.892 7 0.912 6 0.921 9 0.930 5
Tab.5  实验3定量评价
[1] Chehata N, Orny C, Boukir S, et al. Object-based change detection in wind storm-damaged forest using high-resolution multispectral images[J]. International Journal of Remote Sensing, 2014, 35(13):4758-4777.
doi: 10.1080/01431161.2014.930199
[2] Gao L P, Shi W Z, Miao Z L, et al. Method based on edge constraint and fast marching for road centerline extraction from very high-resolution remote sensing images[J]. Remote Sensing, 2018, 10(6):900.
doi: 10.3390/rs10060900
[3] Porter S, Linderman M . Historic land cover change in the agricultural midwest using an object-based approach for classification of high-resolution imagery[J]. Journal of Applied Remote Sensing, 2013, 7(1):073506.
doi: 10.1117/1.JRS.7.073506
[4] 黄鹏, 郑淇, 梁超. 图像分割方法综述[J]. 武汉大学学报(理学版), 2020,(6):519-531.
Huang P, Zheng Q, Liang C. Overview of image segmentation metho-ds[J]. Journal of Wuhan University(Natural Science Edition), 2020, 66(6):519-531.
[5] Peng B, Zhang L, Zhang D. A survey of graph theoretical approaches to image segmentation[J]. Pattern Recognition, 2013, 46(3):1020-1038.
doi: 10.1016/j.patcog.2012.09.015
[6] Fan S, Sun Y, Shui P. Region-merging method with texture pattern attention for SAR image segmentation[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18(1):112-116.
doi: 10.1109/LGRS.8859
[7] Zhou C, Wu D, Qin W, et al. An efficient two-stage region merging method for interactive image segmentation[J]. Computers and Electrical Engineering, 2016, 54:220-229.
doi: 10.1016/j.compeleceng.2015.09.013
[8] Lassalle P, Inglada J, Michel J, et al. A scalable tile-based framework for region-merging segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(10):5473-5485.
doi: 10.1109/TGRS.2015.2422848
[9] 黄亮, 姚丙秀, 陈朋弟, 等. 高分辨率遥感影像超像素的模糊聚类分割法[J]. 测绘学报, 2020, 49(5):589-597.
Huang L, Yao B X, Chen P D, et al. Superpixel segmentation method of high resolution remote sensing image based on fuzzy clustering[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(5):589-597.
[10] An J, Shi Y, Han Y, et al. Extract and merge:Superpixel segmentation with regional attributes[C]// European Conference on Computer Vision.Springer, 2020:155-170.
[11] Xu H, Zhang H, He W, et al. Superpixel-based spatial-spectral dimension reduction for hyperspectral imagery classification[J]. Neurocomputing, 2019, 360:138-150.
doi: 10.1016/j.neucom.2019.06.023
[12] Achanta R, Shaji A, Smith K, et al. SLIC Superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2274-2282.
doi: 10.1109/TPAMI.2012.120
[13] Karydas C, Jiang B. Scale optimization in topographic and hydrographic feature mapping using fractal analysis[J]. International Journal of Geo-Information, 2020, 9(11):631.
[14] Comaniciu D M P. A robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5):313-329.
doi: 10.1109/34.990134
[15] Park J H, Lee G S, Park S Y. Color image segmentation using adaptive mean shift and statistical model-based methods[J]. Computers and Mathematics with Applications, 2009, 57(6):970-980.
doi: 10.1016/j.camwa.2008.10.053
[16] Wang S, Chung F, Xiong F. A novel image thresholding method based on Parzen window estimate[J]. Pattern Recognition, 2008, 41(1):117-129.
doi: 10.1016/j.patcog.2007.03.029
[17] 向日华, 王润生. 一种基于高斯混合模型的距离图像分割算法[J]. 软件学报, 2003, 14(7):1250-1257.
Xiang R H, Wang R S. A range image segmentation algorithm based on Gaussian mixture model[J]. Journal of Software, 2003, 14(7):1250-1257.
[18] 赵泉华, 石雪, 王玉, 等. 可变类空间约束高斯混合模型遥感图像分割[J]. 通信学报, 2017, 38(2):34-43.
Zhang Q H, Shi X, Wang Y, et al. Remote sensing image segmentation based on spatially constrained Gaussian mixture model with unknown class number[J]. Journal on Communications, 2017, 38(2):34-43.
[19] Li W, Mao K, Zhang H, et al. Selection of Gabor filters for improved texture feature extraction[C]// 2010 IEEE International Conference on Image Processing.IEEE, 2010:361-364.
[20] Parzen E. On estimation of a probability density function and mode[J]. Annals of Mathematical Statistics, 1962, 33(3):1065-1076.
doi: 10.1214/aoms/1177704472
[21] Scott D W. Multivariate density estimation:Theory,practice,and visualization[M]. John Wiley and Sons, 2015.
[22] Jones M C, Marron J S, Sheather S J. A brief survey of bandwidth selection for density estimation[J]. Journal of the American Statistical Association, 1996, 91(433):401-407.
doi: 10.1080/01621459.1996.10476701
[23] Raykar V C, Duraiswami R. Fast optimal bandwidth selection for kernel density estimation[C]// Proceedings of the 2006 SIAM International Conference on Data Mining.Society for Industrial and Applied Mathematics, 2006:524-528.
[24] Botev Z I, Kroese D P. Non-asymptotic bandwidth selection for density estimation of discrete data[J]. Methodology and Computing in Applied Probability, 2008, 10(3):435-451.
doi: 10.1007/s11009-007-9057-z
[25] Trudeau R J. Introduction to graph theory[M]. Courier Corporation, 2013.
[26] Foulds L R. Graph theory applications[M]. Springer Science and Business Media, 2012.
[27] Unnikrishnan R, Pantofaru C, Hebert M. Toward objective evaluation of image segmentation algorithms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6):929-944.
pmid: 17431294
[28] Gong C, Zhou P, Han J . Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12):7405-7415.
doi: 10.1109/TGRS.2016.2601622
[29] Fang Y, Wang J. Selection of the number of clusters via the bootstrap method[J]. Computational Statistics and Data Analysis, 2012, 56(3):468-477.
doi: 10.1016/j.csda.2011.09.003
[30] Haslbeck J M B, Wulff D U. Estimating the number of clusters via a corrected clustering instability[J]. Computational Statistics, 2020(35):1879-1894.
[31] 青海玉树震后GeoEye-1卫星地图[EB/OL].(2010-04-20)[2021-02-15].http://www.godeyes.cn/html/2010/04/20/download_9519.html.
GeoEye-1 satellite map after Yushu earthquake in Qinghai Province[EB/OL].(2010-04-20)[2021-02-15].http://www.godeyes.cn/html/2010/04/20/download_9519.html.
[1] 徐欣钰, 李小军, 赵鹤婷, 盖钧飞. NSCT和PCNN相结合的遥感图像全色锐化算法[J]. 自然资源遥感, 2023, 35(3): 64-70.
[2] 王华, 李卫卫, 李志刚, 陈学业, 孙乐. 基于多尺度超像素的高光谱图像分类研究[J]. 自然资源遥感, 2021, 33(3): 63-71.
[3] 夏炎, 黄亮, 陈朋弟. 模糊超像素分割算法的无人机影像烟株精细提取[J]. 国土资源遥感, 2021, 33(1): 115-122.
[4] 张锐, 尤淑撑, 杜磊, 禄競, 何芸, 胡勇. 基于改进超像素和标记分水岭的高分辨率遥感影像分割方法[J]. 国土资源遥感, 2021, 33(1): 86-95.
[5] 王碧晴, 韩文泉, 许驰. 基于图像分割和NDVI时间序列曲线分类模型的冬小麦种植区域识别与提取[J]. 国土资源遥感, 2020, 32(2): 219-225.
[6] 姚丙秀, 黄亮, 许艳松. 一种结合超像素和图论的高空间分辨率遥感影像分割方法[J]. 国土资源遥感, 2019, 31(3): 72-79.
[7] 张永梅, 孙海燕, 胥玉龙. 一种改进的基于超像素的多光谱图像分割方法[J]. 国土资源遥感, 2019, 31(1): 58-64.
[8] 吴柳青, 胡翔云. 基于多尺度多特征的高空间分辨率遥感影像建筑物自动化检测[J]. 国土资源遥感, 2019, 31(1): 71-78.
[9] 苏腾飞, 张圣微, 李洪玉. 基于超像素MRF的农田地区高分遥感影像分割[J]. 国土资源遥感, 2018, 30(1): 37-44.
[10] 马国锐, 马艳丽, 江满珍. 结合颜色直方图和LBP纹理的遥感影像分割[J]. 国土资源遥感, 2017, 29(3): 32-40.
[11] 赵庆平. 朗伯定律的宽观测带SAR海冰图像分割[J]. 国土资源遥感, 2017, 29(2): 67-71.
[12] 滑永春, 李增元, 高志海, 郭中. 基于GF-2民勤县白刺包提取技术[J]. 国土资源遥感, 2017, 29(1): 71-77.
[13] 张涛, 杨晓梅, 童立强, 贺鹏. 基于多尺度图像库的遥感影像分割参数优选方法[J]. 国土资源遥感, 2016, 28(4): 59-63.
[14] 鲁恒, 付萧, 刘超, 郭加伟, 苟思, 刘铁刚. 基于无人机影像的快速分割方法[J]. 国土资源遥感, 2016, 28(2): 72-78.
[15] 苏腾飞, 李洪玉, 屈忠义. 高分辨率遥感图像道路分割算法[J]. 国土资源遥感, 2015, 27(3): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发