Please wait a minute...
 
国土资源遥感  2018, Vol. 30 Issue (3): 120-127    DOI: 10.6046/gtzyyg.2018.03.17
     本期目录 | 过刊浏览 | 高级检索 |
基于MODIS热红外波段与投影寻踪模型的水汽反演方法
林奕桐1, 叶骏菲2, 王永前3(), 钟仕全4
1. 南宁市气象局,南宁 530022
2. 邕宁区气象局,南宁 530022
3. 成都信息工程大学,成都 610225
4. 广西壮族自治区气象减灾研究所/国家卫星中心遥感应用实验基地,南宁 530022
Water vapor retrieval method based on MODIS thermal infrared band and projection pursuit model
Yitong LIN1, Junfei YE2, Yongqian WANG3(), Shiquan ZHONG4
1. Nanning Weather Bureau, Nanning 530022, China
2. Yongning District Weather Bureau,Nanning 530022, China
3. Chengdu University of Information Technology, Chengdu 610225, China
4. Guangxi Institute of Meteorology and Disaster Reduction/Remote Sensing Application and Test Base of National Satellite Meteorology Centre, Nanning 530022, China
全文: PDF(3393 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

基于热红外波段的水汽反演方法可以进行夜间观测,但是精度稍低,因此提出基于MODIS热红外通道结合投影寻踪模型的水汽反演方法。通过变量选取实验和结果对比实验,选取出最适宜的模型输入变量及变量组合,建立了投影寻踪模型水汽反演方法; 应用该方法反演了美国南部地区2015年夏季与中国山西省2011年7月份的水汽含量,并与GPS测量水汽数据进行了对比。结果表明: 在美国南部地区,基于投影寻踪模型的水汽反演算法反演得到的水汽含量与GPS测量水汽含量的均方根误差(root mean square error,RMSE)为2.478 mm; 在山西省RMSE为1.408 mm; 与MODIS热红外水汽产品数据相比,具有更高的精度,且弥补了近红外夜间无法工作的缺陷,更具有业务化推广的潜力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林奕桐
叶骏菲
王永前
钟仕全
关键词 亮度温度水汽含量投影寻踪    
Abstract

Precipitable water vapor retrieval methods using MODIS data are mainly based on near infrared and thermal infrared data. Compared with the thermal infrared methods, the near infrared methods have higher inversion accuracy. The near infrared water vapor retrieval method is only applicable to daytime; by contrast, the thermal infrared water vapor data can be obtained both day and night. Therefore, the thermal infrared data are more suitable for operational applications. It is of great significance to improve the accuracy of thermal infrared water vapor retrieval methods. By means of variable selection experiments and results comparing experiments, the precision of variable associations were tested with the optimal substitution variable associations selected, and the water vapour retrieval method based on projection pursuit model has been found. The inversion experiment over the 2015 summer water vapor in the South United States and July 2011 in Shanxi Province of China were carried out through projection pursuit model with inverse results validated by the the water vapor detection data(WGPS). According to the results obtained, in South United States, the root-mean-square error was 2.478 mm based on the water vapor retrieval model of brightness temperature and projection pursuit. In Shanxi province of China, the root-mean-square error was 1.408 mm. Compared with thermal infrared vapor product of MODIS, it had higher accuracy; compared with MODIS near infrared water vapor product, it had higher accuracy and temporal resolution. This method has the potential of business promotion.

Key wordsbrightness temperature    water vapor column    projection pursuit
收稿日期: 2017-02-22      出版日期: 2018-09-10
:  TP79  
基金资助:国家自然科学基金项目“基于多源遥感数据的陆地上空高时空分辨率大气水汽反演研究”(41471305);“暴雨定点、定量模块化智能计算集合预报建模理论方法研究”(41575051);四川省教育厅创新团队项目“遥感定量反演及其气象应用”(16TD0024);重庆市气象局开放基金项目“基于多源卫星的重庆市大气环境质量遥感信息提取及综合评价研究”(kfjj-201402)
通讯作者: 王永前
作者简介: 林奕桐(1990-),男,学士,助理工程师,主要从事遥感应用研究。Email: drift_lin@163.com。
引用本文:   
林奕桐, 叶骏菲, 王永前, 钟仕全. 基于MODIS热红外波段与投影寻踪模型的水汽反演方法[J]. 国土资源遥感, 2018, 30(3): 120-127.
Yitong LIN, Junfei YE, Yongqian WANG, Shiquan ZHONG. Water vapor retrieval method based on MODIS thermal infrared band and projection pursuit model. Remote Sensing for Land & Resources, 2018, 30(3): 120-127.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2018.03.17      或      https://www.gtzyyg.com/CN/Y2018/V30/I3/120
Fig.1  T31,T32,T31,T32WGPS的归一化统计
Fig.2-1   T 31 , T 32 , T 31 T 32 分别与 W GPS 的线性关系
Fig.2-2   T 31 , T 32 , T 31 T 32 分别与 W GPS 的线性关系
Fig.3  部分亮温四则运算及WGPS的归一化统计
Fig.4  WGPS与部分亮温四则运算的线性关系
Fig.5  美国南部地区水汽反演结果与WGPS对比
Fig.6  中国山西省水汽反演结果与WGPS对比
Fig.7  3组模型水汽反演结果与WGPS的相关性分析
Fig.8  投影寻踪模型水汽反演结果与WGPS的相关性分析
[1] 李国平, 黄丁发 . GPS遥感区域大气水汽总量研究回顾与展望[J]. 气象科技, 2004,32(4):201-205.
Li G P, Huang D F . Reviews and prospects of researches on remote sensing of regional atmospheric water vapor using ground-based GPS[J]. Meteorological Science and Technology, 2004,32(4):201-205.
[2] 杨景梅, 邱金桓 . 用地面湿度参量计算我国整层大气可降水量及有效水汽含量方法的研究[J]. 大气科学, 2002,26(1):9-22.
doi: 10.3878/j.issn.1006-9895.2002.01.02
Yang J M, Qiu J H . A method for estimating precipitable water and effective water vapor content from ground humidity parameters[J]. Chinese Journal of Atmospheric Sciences, 2002,26(1):9-22.
[3] 徐洪雄, 徐祥德, 陈斌 , 等. 双台风生消过程涡旋能量、水汽输送相互影响的三维物理图像[J]. 气象学报, 2013,71(5):825-838.
doi: 10.11676/qxxb2013.069
Xu H X, Xu X D, Chen B , et al. The structure change and energy moisture transport physical image in the development and decay processes of binary typhoon vortices[J]. Acta Meteorologica Sinica, 2013,71(5):825-838.
[4] 李大山, 石定朴, 郑新江 , 等. 静止气象卫星水汽图像的分析和应用(一)[J]. 应用气象学报, 1998,9(2):186-196.
doi: 10.1007/s00376-999-0032-1
Li D S, Shi D P, Zheng X J , et al. Analysis and application of GMS 5 water vapor images (I)[J]. Quarterly Journal of Applied Meteorology, 1998,9(2):186-196.
[5] 郁淑华 . 高原低涡东移过程的水气图像[J]. 高原气象, 2002,21(2):199-204.
Yu S H . Water vapor imagery of vortex miving process over Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2002,21(2):199-204.
[6] Menzel W P, Seemann S W, Li J , et al. MODIS Atmospheric Profile Retrieval Algorithm Theoretical Basis Document[M].MODIS ATBD version 6, 2002.
[7] Seemann S W, Li J, Menzel W P , et al. Operational retrieval of atmospheric temperature, moisture,and ozone from MODIS infrared radiances[J]. Journal of Applied Meteorology, 2003,42(8):1072-1091.
doi: 10.1175/1520-0450(2003)042<1072:OROATM>2.0.CO;2
[8] Chang L, Jin S G. MODIS infrared (IR) water vapor calibration model and assessment [C]//Proceedings of the 2013 21st International Conference on Geoinformatics (GEOINFORMATICS).Kaifeng:IEEE, 2013: 1-5.
[9] Liu Z Z, Wong M S, Nichol J , et al. A multi-sensor study of water vapour from radiosonde,MODIS and AERONET:A case study of Hong Kong[J]. International Journal of Climatology, 2013,33(1):109-120.
doi: 10.1002/joc.v33.1
[10] Bennouna Y S, Torres B, Cachorro V E, et al. The annual cycle of total precipitable water vapor derived from different remote sensing techniques:An application to several sites of the Iberian Peninsula [C]//AIP Conference Proceedings 1531.Berlin:AIP, 2013: 296-299.
[11] 孟宪红, 吕世华, 张堂堂 . MODIS近红外水汽产品的检验、改进及初步应用——以黑河流域金塔绿洲为例[J]. 红外与毫米波学报, 2007,26(2):107-111.
Meng X H, Lyu S H, Zhang T T . Testing,improvement and application of MODIS near infrared water vapor products-taking Jinta oasis in Heihe River basin as a case study[J]. Journal of Infrared and Millimeter Waves, 2007,26(2):107-111.
[12] 张正健, 李祚泳, 秦宁生 , 等. 遥感影像投影寻踪回归分类模型[J]. 中国图象图形学报, 2012,17(12):1568-1574.
doi: 10.11834/jig.20121216
Zhang Z J, Li Z Y, Qin N S , et al. Remote sensing image classification model based on projection pursuit regression[J]. Journal of Image and Graphics, 2012,17(12):1568-1574.
[13] Ware R H, Fulker D W, Stein S A , et al. SuomiNet:A real-time national GPS network for atmospheric research and education[J]. Bulletin of the American Meteorological Society, 2000,81(4):677-694.
doi: 10.1175/1520-0477(2000)0812.3.CO;2
[14] Schroedter-Homscheidt M, Drews A, Heise S . Total water vapor column retrieval from MSG-SEVIRI split window measurements exploiting the daily cycle of land surface temperatures[J]. Remote Sensing of Environment, 2008,112(1):249-258.
doi: 10.1016/j.rse.2007.05.006
[15] Becker F, Li Z L . Temperature-independent spectral indices in thermal infrared bands[J]. Remote Sensing of Environment, 1990,32(1):17-33.
doi: 10.1016/0034-4257(90)90095-4
[16] Li Z L, Jia L, Su Z B , et al. A new approach for retrieving precipitable water from ATSR2 split-window channel data over land area[J]. International Journal of Remote Sensing, 2003,24(24):5095-5117.
doi: 10.1080/0143116031000096014
[17] Bachmann C M, Musman S A, Luong D , et al. Unsupervised BCM projection pursuit algorithms for classification of simulated radar presentations[J]. Neural Networks, 1994,7(4):709-728.
doi: 10.1016/0893-6080(94)90047-7
[18] 肖长来, 危润初, 梁秀娟 , 等. 基于投影寻踪聚类模型的龙坑水源地地下水水质评价[J]. 吉林大学学报(地球科学版), 2011,41(s1):248-252.
Xiao C L, Wei R C, Liang X J , et al. Assessment of water quality of groundwater in Longkeng based on projection pursuit cluster model[J]. Journal of Jilin University(Earth Science Edition), 2011,41(s1):248-252.
[19] 李祚泳, 汪嘉杨, 金相灿 , 等. 基于进化算法的湖泊富营养化投影寻踪回归预测模型[J]. 四川大学学报(工程科学版), 2007,39(2):1-8.
Li Z Y, Wang J Y, Jin X C , et al. Evolution algorithm based forecasting model for lake eutrophication using PPR[J]. Journal of Sichuan University(Engineering Science Edition), 2007,39(2):1-8.
[1] 肖晨超, 吴小娟, 汪大明, 褚永彬. 基于烃类微渗漏的油气异常信息提取及远景区预测——以中非Salamat盆地为例[J]. 国土资源遥感, 2019, 31(4): 120-127.
[2] 廖小露, 刘嘉, 周兴霞. 地空同步试验高光谱影像特征提取与分类[J]. 国土资源遥感, 2019, 31(3): 65-71.
[3] 崔林林, 袁乔, 李国胜. 黑龙江省大气水汽含量及其影响因素分析[J]. 国土资源遥感, 2019, 31(1): 79-86.
[4] 杨敏, 杨贵军, 王艳杰, 张勇峰, 张智宏, 孙晨红. 北京城市热岛效应时空变化遥感分析[J]. 国土资源遥感, 2018, 30(3): 213-223.
[5] 邵秋芳, 彭培好, 黄洁, 刘智, 孙小飞, 邵怀勇. 长江上游安宁河流域生态环境脆弱性遥感监测[J]. 国土资源遥感, 2016, 28(2): 175-181.
[6] 佃袁勇, 方圣辉, 徐永荣. 一种协同反演气溶胶与水汽含量的高光谱图像大气校正算法[J]. 国土资源遥感, 2015, 27(2): 22-28.
[7] 毛克彪, 唐华俊, 陈仲新, 王永前. 一个用神经网络优化的针对ASTER数据反演地表温度和发射率的多波段算法[J]. 国土资源遥感, 2007, 19(3): 18-22.
[8] 毛克彪, 施建成, 李召良, 覃志豪, 贾媛媛. 用被动微波AMSR数据反演地表温度及发射率的方法研究[J]. 国土资源遥感, 2005, 17(3): 14-17.
[9] 高懋芳, 覃志豪, 刘三超.  MODIS数据在林火监测中的应用研究[J]. 国土资源遥感, 2005, 17(2): 60-63.
[10] 刘三超, 张万昌. 张掖绿洲城市热效应的遥感研究[J]. 国土资源遥感, 2003, 15(4): 17-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发