Please wait a minute...
 
国土资源遥感  2018, Vol. 30 Issue (1): 54-62    DOI: 10.6046/gtzyyg.2018.01.08
  本期目录 | 过刊浏览 | 高级检索 |
基于FSDAF方法融合生成高时空分辨率地表温度
杨敏1,2,3(), 杨贵军2,3,4(), 陈晓宁5, 张勇峰6, 尤静妮5
1.陕西省地震局,西安 710068
2.国家农业信息化工程技术研究中心,北京 100097
3.农业部农业信息技术重点实验室,北京 100097
4.北京市农业物联网工程技术研究中心,北京 100097
5.西安科技大学测绘科学与技术学院,西安 710054
6.西安中天纬地测绘科技有限公司,西安 710065
Generation of land surface temperature with high spatial and temporal resolution based on FSDAF method
Min YANG1,2,3(), Guijun YANG2,3,4(), Xiaoning CHEN5, Yongfeng ZHANG6, Jingni YOU5
1. Shaanxi Earthquake Agency, Xi’an 710068, China;
2. National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
3. Key Laboratory of Agri-informatics, Ministry of Agriculture, Beijing 100097, China
4. Beijing Engineering Research Center of Agricultural Internet of Things, Beijing 100097, China
5. College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China;
6. Xi’an Zhongtianweidi Surveying & Mapping Technology Co., Ltd, Xi’an 710065, China;
全文: PDF(1593 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

高时间/高空间分辨率遥感数据的应用具有极为广泛的前景。为此,利用中等分辨率成像光谱仪(moderate-resolution imaging spectroradiometer,MODIS)和高级热量散射和反射辐射仪(advanced spaceborne thermal emission and reflection radiometer,ASTER)数据,基于一种灵活的时空数据融合(flexible spatio-temporal data fusion , FSDAF)方法生成高时间/高空间分辨率的地表温度(land surface temperature, LST),对融合结果用ASTER温度产品(7 d)及自动气象站(automatic weather station,AWS)站点的地表辐射红外温度数据(4 d)进行验证,结果表明: 基于FSDAF的数据融合方法生成的LST影像清晰度较高; 融合影像与ASTER LST产品的决定系数R2≥0.91,均方根误差≤2.44 K,平均绝对误差≤1.84 K; 融合影像与AWS LST数据的决定系数R2≥0.64。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨敏
杨贵军
陈晓宁
张勇峰
尤静妮
关键词 时空融合数据融合遥感地表温度(LST)自动气象站(AWS)    
Abstract

The application of the high spatio-temporal resolution data possesses very extensive foreground. Consequently, based on a flexible spatio-temporal data fusion(FSDAF)method and using MODIS and ASTER data,the authors generate the land surface temperature(LST) with high spatial and temporal resolution. FSDAF is a method based on spectral unmixing and thin plate spline interpolation function. Compared with the existing spatio-temporal data fusion method, its advantages lie in less input data,suitableness for heterogeneous surface and capability of predicting the gradient of land cover types and so on. The fusion results were verified by using the ASTER temperature products(7 days) and the surface radiation infrared temperature data(4 days)of the automatic weather station(AWS) sites. The results show that the LST images generated by the data fusion method based on FSDAF have higher clarity, the correlation coefficient of the fusion images and the ASTER LST products is higher than 0.91(September 28) , the room mean square error (RMSE) is less than 2.44 k(September 19), the mean absolute error (MAE) is less than 1.84 k (September 19)and the correlation coefficient of the fusion images and the AWS LST data R2 is higher than 0.64(August 18).

Key wordsspatial and temporal fusion    data fusion    remote sensing    land surface temperature(LST)    automatic weather station(AWS)
收稿日期: 2016-09-19      出版日期: 2018-02-08
:  TP751.1  
基金资助:国家自然科学基金项目“基于同化策略的地表温度多模式降尺度方法及其不确定性研究”(编号: 41271345)资助
作者简介:

第一作者: 杨 敏(1991-),女,硕士研究生, 主要研究方向为热红外遥感。Email:yangmin_91@163.com

引用本文:   
杨敏, 杨贵军, 陈晓宁, 张勇峰, 尤静妮. 基于FSDAF方法融合生成高时空分辨率地表温度[J]. 国土资源遥感, 2018, 30(1): 54-62.
Min YANG, Guijun YANG, Xiaoning CHEN, Yongfeng ZHANG, Jingni YOU. Generation of land surface temperature with high spatial and temporal resolution based on FSDAF method. Remote Sensing for Land & Resources, 2018, 30(1): 54-62.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2018.01.08      或      https://www.gtzyyg.com/CN/Y2018/V30/I1/54
Fig.1  研究区位置及AWS站点分布示意图
遥感数据 获取时间 空间分辨率/m 时间分辨率/d 数据说明 用途
MOD11_L2 20120710
20120802
20120818
1 000 1 LST数据 数据输入
ASTER LST 20120827
20120903
20120912
90 16 LST产品 数据输入及验证
Tab.1  研究中使用的遥感数据
Fig.2  技术流程图
Fig.3  17个AWS站点4 d平均标准差
Fig.4  AWS站点观测LST与FSDAF融合生成LST的散点图
Fig.5-1  研究区不同日期LST分布图
Fig.5-2  研究区不同日期LST分布图
Fig.6  真实LST与预测LST差值影像图
Fig.7-1  FSDAF方法预测LST与ASTER LST产品的散点图
Fig.7-2  FSDAF方法预测LST与ASTER LST产品的散点图
[1] 刘绍民,孙中平,李小文,等.蒸散量测定与估算方法的对比研究[J].自然资源学报,2003,18(2):161-167.
Liu S M,Sun Z P,Li X W,et al.A comparative study on models for estimating evapotranspiration[J].Journal of Natural Resources,2003,18(2):161-167.
[2] Li A N,Zhao W,Deng W.A quantitative inspection on spatio-temporal variation of remote sensing-based estimates of land surface evapotranspiration in south Asia[J].Remote Sensing,2015,7(4):4726-4752.
[3] 张仁华,孙晓敏,王伟民,等.一种可操作的区域尺度地表通量定量遥感二层模型的物理基础[J].中国科学D辑(地球科学),2004,34(s2):200-216.
Zhang R H,Sun X M,Wang W M,et al.The physical basis of an operable regional scale surface fluxes on quantitative remote sensing Bilevel model[J].Science China Earth Sciences,2004,34(s2):200-216.
[4] Huang B,Wang J,Song H H,et al.Generating high spatiotemporal resolution land surface temperature for urban heat island monitoring[J].IEEE Geoscience and Remote Sensing Letters,2013,10(5):1011-1015.
[5] Zhou J,Zhan W F,Hu D Y,et al.Improvement of mono-window algorithm for retrieving land surface temperature from HJ-1B satellite data[J].Chinese Geographical Science,2010,20(2):123-131.
[6] Wan Z M,Li Z L.A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(4):980-996.
[7] Zhang Y.Understanding image fusion[J].Photogrammetric Engineering & Remote,2004,70(6):657-661.
[8] Zhu X L,Helmer E H,Gao F,et al.A flexible spatiotemporal method for fusing satellite images with different resolutions[J].Remote Sensing of Environment,2016,172:165-177.
[9] Gao F,Masek J,Schwaller M,et al.On the blending of the Landsat and MODIS surface reflectance:Predicting daily Landsat surface reflectance[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(8):2207-2218.
[10] Zhu X L,Chen J,Gao F,et al.An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J].Remote Sensing of Environment,2010,114(11):2610-2623.
[11] Hilker T,Wulder M A,Coops N C,et al.A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS[J].Remote Sensing of Environment,2009,113(8):1613-1627.
[12] Zhukov B,Oertel D,Lanzl F,et al.Unmixing-based multisensor multiresolution image fusion[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(3):1212-1226.
[13] Wu M Q,Niu Z,Wang C Y,et al.Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model[J].Journal of Applied Remote Sensing,2012,6(1): 063507.
[14] Huang B,Song H H.Spatiotemporal reflectance fusion via sparse representation[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(10):3707-3716.
[15] 角媛梅,马明国,肖笃宁.黑河流域中游张掖绿洲景观格局研究[J].冰川冻土,2003,25(1):94-99.
Jiao Y M,Ma M G,Xiao D N.Research on the landscape pattern of Zhangye oasis in the middle reaches of Heihe River[J].Journal of Glaciology and Geocryology,2003,25(1):94-99.
[16] 刘润堂,李远华,许平.黑河流域农业节水任务及需正确处理的关系[J]. 中国水利, 2002(2):44-46.
Liu R T,Li Y H,Xu P.Agricultural water saving task in Heihe River Basin and how to handle its relationship with other respects properly[J]. China Water Resources, 2002(2):44-46.
[17] 历华,王合顺,杜永明,等.黑河生态水文遥感试验:2012年黑河流域中游ASTER地表温度和地表发射率数据集[EB/OL].2015..
Li H,Wang H S,Du Y M, et al. HiWATER: ASTER LST and LSE dataset in 2012 in the middle reaches of the Heihe River Basin[EB/OL].2015. .
[18] Li Z L,Tang B H,Wu H,et al.Satellite-derived land surface temperature:Current status and perspectives[J].Remote Sensing of Environment,2013,131:14-37.
[19] Xu Z W,Liu S M,Li X,et al.Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE[J].Journal of Geophysical Research:Atmospheres,2013,118(23):13140-13157.
[20] Li H,Sun D L,Yu Y Y,et al.Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China[J].Remote Sensing of Environment,2014,142:111-121.
[21] Yang G J,Weng Q H,Pu R L,et al.Evaluation of ASTER-like daily land surface temperature by fusing ASTER and MODIS data during the HiWATER-MUSOEXE[J].Remote Sensing,2016,8(1):75.
[22] 白洁,刘绍民,扈光.针对TM/ETM+遥感数据的地表温度反演与验证[J].农业工程学报,2008,24(9):148-154.
Bai J,Liu S M,Hu G.Inversion and verification of land surface temperature with remote sensing TM/ETM+ data[J].Transactions of the CSAE,2008,24(9):148-154.
[23] 杨贵军,孙晨红,历华.黑河流域ASTER与MODIS融合生成高分辨率地表温度的验证[J].农业工程学报,2015,31(6):193-200.
Yang G J,Sun C H,Li H.Verification of high-resolution land surface temperature by blending ASTER and MODIS data in Heihe River Basin[J].Transactions of the Chinese Society of Agricultural Engineering,2015,31(6):193-200.
[24] 于文凭,马明国.MODIS地表温度产品的验证研究——以黑河流域为例[J].遥感技术与应用,2011,26(6):705-712.
Yu W P,Ma M G.Validation of the MODIS land surface temperature products:A case study of the Heihe River Basin[J].Remote Sensing Technology and Application,2011,26(6):705-712.
[25] Wan Z M.New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products[J].Remote Sensing of Environment,2008,112(1):59-74.
[26] 石月婵,杨贵军,李鑫川,等.融合多源遥感数据生成高时空分辨率数据的方法对比[J].红外与毫米波学报,2015,34(1):92-99.
Shi Y C,Yang G J,Li X C,et al.Intercomparison of the different fusion methods for generating high spatial-temporal resolution data[J].Journal of Infrared and Millimeter Waves,2015,34(1):92-99.
[27] 邬明权,王洁,牛铮,等.融合MODIS与Landsat数据生成高时间分辨率Landsat数据[J].红外与毫米波学报,2012,31(1):80-84.
Wu M Q,Wang J,Niu Z,et al.A model for spatial and temporal data fusion[J].Journal of Infrared and Millimeter Waves,2012,31(1):80-84.
[1] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[2] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[3] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[4] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[5] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[6] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[7] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[8] 丁波, 李伟, 胡克. 基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演[J]. 自然资源遥感, 2022, 34(1): 10-17.
[9] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[10] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[11] 贺鹏, 童立强, 郭兆成, 涂杰楠, 王根厚. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264.
[12] 于新莉, 宋妍, 杨淼, 黄磊, 张艳杰. 结合空间约束的卷积神经网络多模型多尺度船企场景识别[J]. 自然资源遥感, 2021, 33(4): 72-81.
[13] 李轶鲲, 杨洋, 杨树文, 王子浩. 耦合模糊C均值聚类和贝叶斯网络的遥感影像后验概率空间变化向量分析[J]. 自然资源遥感, 2021, 33(4): 82-88.
[14] 艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
[15] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发