Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (2): 121-127    DOI: 10.6046/zrzyyg.2021209
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于多参考影像信息融合的遥感影像厚云去除
蒋斯立(), 黄微, 黄睿
上海大学通信与信息工程学院,上海 200444
Thick cloud removal of remote sensing images based on multi-reference image information fusion
JIANG Sili(), HUANG Wei, HUANG Rui
School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
全文: PDF(3557 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

遥感影像去云是遥感影像处理与分析的重要领域,对影像后续的信息提取等操作起到至关重要的作用。针对多时相遥感影像融合去云中对待重建图像的质量要求较高以及适用性较低的问题,提出了一种基于一幅或多幅参考影像信息进行多时相遥感影像融合的厚云去除算法,包括参考影像的选取、辐射归一化、多时相影像融合以及泊松图像编辑4个主要步骤。首先根据影像掩模及主成分信息选取参考影像,并且进行多源遥感影像辐射归一化保留地物信息的变化情况; 然后基于选择性多源全变分模型对影像进行融合处理,并通过泊松图像编辑技术改善影像融合后的边界梯度不连续问题。实验结果表明,所提方法可以对带有厚云且质量不一的多源遥感影像进行有效去云处理,并在整体上获得比传统方法更高的影像细节精度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋斯立
黄微
黄睿
关键词 厚云去除参考影像辐射归一化多时相选择性多源全变分    
Abstract

The cloud removal of remote sensing images is very important in the processing and analysis of remote sensing images and plays a crucial role in the subsequent image information extraction and other operations. Aiming at the high-quality requirements and low applicability of the reconstructed images in the cloud removal of multi-temporal remote sensing image fusion, a thick cloud removal algorithm based on one or more reference images was proposed, mainly including a selection of reference image, radiometric normalization, multi-temporal image fusion, and Poisson image editing. Firstly, the reference image was selected according to the image masking and the principal component information, and the radiometric normalization of the multi-source remote sensing image was carried out to preserve the change of ground feature information. Then, the image was fused based on the selective multi-source total variation model, and the boundary gradient discontinuity after image fusion was reduced by Poisson image editing. The experimental results show that the proposed method can effectively remove clouds from multi-source remote sensing images with thick clouds and different quality, and obtain higher image detail precision than traditional methods.

Key wordsthick cloud removal    reference image    radiometric normalization    multi-temporal    selective multi-source total variation
收稿日期: 2021-07-06      出版日期: 2022-06-20
ZTFLH:  TP79  
作者简介: 蒋斯立(1997-),男,硕士研究生,主要从事卫星影像的信息重建、遥感信息智能处理等方面的研究。Email: 634915933@qq.com
引用本文:   
蒋斯立, 黄微, 黄睿. 基于多参考影像信息融合的遥感影像厚云去除[J]. 自然资源遥感, 2022, 34(2): 121-127.
JIANG Sili, HUANG Wei, HUANG Rui. Thick cloud removal of remote sensing images based on multi-reference image information fusion. Remote Sensing for Natural Resources, 2022, 34(2): 121-127.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021209      或      https://www.gtzyyg.com/CN/Y2022/V34/I2/121
Fig.1  基于参考影像的多时相影像融合去云流程图
Fig.2-1  参考影像的选取
Fig.2-2  参考影像的选取
地物类型 影像
类型
影像1 影像2 影像3
山区、
城市
原始影像
重建结果
河流、城市道路 原始影像
重建结果
Tab.1  山区、城市、河流、道路等地物类型重建结果
指标 第一组影像1 第一组影像2 第一组影像3 第二组影像1 第二组影像2 第二组影像3
SSIM 0.996 8 0.997 9 0.999 8 0.927 5 0.999 8 0.857 4
PSNR 36.129 6 31.697 9 33.191 6 35.766 6 34.508 9 30.673 6
Tab.2  基于各原影像输出结果的定量指标对比
地物类型 影像 影像1 影像2 影像3
山脉、城
市道路
参考影像
SMTV SPA-GAN 基于参考影像1
的重建结果
重建结果
城市道
路、河流
参考影像 影像1 影像2 影像3
重建结果 SMTV SPA-GAN 基于参考影像2
的重建结果
平原 参考影像 影像1 影像2 影像3
重建结果 SMTV SPA-GAN 基于参考影像3
的重建结果
Tab.3  山区、城市、河流、道路等地物类型重建结果比较
方法 第一组 第二组 第三组
PSNR SSIM PSNR SSIM PSNR SSIM
SMTV 26.978 9 0.892 6 40.041 9 0.846 9 33.950 7 0.841 7
SPA-Net 27.017 2 0.799 5 13.970 2 0.699 1 32.104 2 0.738 8
本文算法 27.323 9 0.944 9 41.646 4 0.925 3 37.748 8 0.944 5
Tab.4  不同算法PSNR与SSIM值对比
[1] 郭华东. 雷达对地观测理论与应用[M]. 北京: 科学出版社, 2000:15-20.
Guo H D. Radar for earth observation:Theory and applications[M]. Beijing: Science Press, 2000:15-20.
[2] Shen H, Li X, Cheng Q, et al. Missing information reconstruction of remote sensing data:A technical review[J]. IEEE Geoscience & Remote Sensing Magazine, 2015, 3(3):61-85.
[3] Rossi R E, Dungan J L, Beck L R. Kriging in the shadows:Geostatistical interpolation for remote sensing[J]. Remote Sensing of Environment, 1994, 49(1):32-40.
doi: 10.1016/0034-4257(94)90057-4
[4] Meer F V D. Remote-sensing image analysis and geostatistics[J]. International Journal of Remote Sensing, 2012, 33(17-18):5644-5676.
doi: 10.1080/01431161.2012.666363
[5] He K, Sun J. Image completion approaches using the statistics of similar patches[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(12):2423-2435.
doi: 10.1109/TPAMI.2014.2330611
[6] Guillemot C, Le M O, et al. Image inpainting:Overview and recent advances[J]. IEEE Signal Processing Magazine, 2013, 31(1):127-144.
doi: 10.1109/MSP.2013.2273004
[7] Ng K P, Yuan Q, Yan L, et al. An adaptive weighted tensor completion method for the recovery of remote sensing images with missing data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6):3367-3381.
doi: 10.1109/TGRS.2017.2670021
[8] Shen H, Li H, Yan Q, et al. An effective thin cloud removal procedure for visible remote sensing images[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2014, 96:224-235.
[9] Lv H, Wang Y, Shen Y. An empirical and radiative transfer model based algorithm to remove thin clouds in visible bands[J]. Remote Sensing of Environment, 2016, 179:183-195.
doi: 10.1016/j.rse.2016.03.034
[10] Xu M, Jia X, Pickering M, et al. Thin cloud removal from optical remote sensing images using the noise-adjusted principal components transform[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 149(MAR.):215-225.
doi: 10.1016/j.isprsjprs.2019.01.025
[11] Chen J, Zhu X, Vogelmann J E, et al. A simple and effective method for filling gaps in Landsat ETM+ SLC-off images[J]. Remote Sensing of Environment, 2011, 115(4):1053-1064.
doi: 10.1016/j.rse.2010.12.010
[12] Chen B, Bo H, Chen L, et al. Spatially and temporally weighted regression:A novel method to produce continuous cloud-free Landsat imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 55(1):27-37.
doi: 10.1109/TGRS.2016.2580576
[13] Zhang Y, Wen F, Gao Z, et al. A coarse-to-fine framework for cloud removal in remote sensing image sequence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019:5963-5974.
[14] Zeng C, Shen H, Zhang L. Recovering missing pixels for Landsat ETM+ SLC-off imagery using multi-temporal regression analysis and a regularization method[J]. Remote Sensing of Environment, 2013, 131:182-194.
doi: 10.1016/j.rse.2012.12.012
[15] Li X, Shen H, Zhang L, et al. Recovering quantitative remote sensing products contaminated by thick clouds and shadows using multitemporal dictionary learning[J]. Geoscience & Remote Sensing, 2014, 52(11):7086-7098.
[16] Zhang Q, Yuan Q, Li J, et al. Cloud and shadow removal for sentinel-2 by progressively spatiotemporal patch group learning[C]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2019:775-778.
[17] 戴昌达, 雷莉萍. TM图像的光谱信息特征与最佳波段组合[J]. 环境遥感, 1989, 4(4):48-58.
Dai C D, Lei L P. The information characteristics of thematic mapper data and the optimal band combination[J]. Remote Sensing of Environment China, 1989, 4(4):48-58.
[18] Zhu Z, Woodcock C E. Automated cloud,cloud shadow,and snow detection in multitemporal Landsat data:An algorithm designed specifically for monitoring land cover change[J]. Remote Sensing of Environment, 2014, 152:217-234.
doi: 10.1016/j.rse.2014.06.012
[19] 余晓敏, 邹勤. 多时相遥感影像辐射归一化方法综述[J]. 测绘与空间地理信息, 2012, 35(6):19-23.
Yu X M, Zou Q. Methods of radiometric normalization for multi-temporal remote sensing images:A review[J]. Geometrics and Spatial Information Technology, 2012, 35(6):19-23.
[20] Turner M G, Gardner R H, O’Neill R V. Landscape ecology in theory and practice[M]. New York: Springer, 2001:108-125.
[21] 邵艳坡, 洪友堂. 遥感影像相对辐射校正的PIF方法[J]. 国土资源遥感, 2017, 29(1):7-13.doi: 10.6046/gtzyyg.2017.01.02.
doi: 10.6046/gtzyyg.2017.01.02
Shao Y P, Hong Y T. PIF method for relative radiometric correction of remote sensing images[J]. Remote Sensing for Land and Resources, 2017, 29(1):7-13.doi: 10.6046/gtzyyg.2017.01.02.
doi: 10.6046/gtzyyg.2017.01.02
[22] Tierney S, Guo Y, Gao J. Selective multi-source total variation image restoration[C]// 2015 International Conference on Digital Image Computing: Techniquesand Applications (DICTA).IEEE, 2015:1-8.
[23] Lin Z, Liu R, Su Z. Linearized alternating direction method with adaptive penalty for low-rank representation[J]. Advances in Neural Information Processing Systems, 2011:612-620.
[24] Zuo W, Lin Z. A generalized accelerated proximal gradient approach for total-variation-based image restoration[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2011, 20(10):2748-2759.
doi: 10.1109/TIP.2011.2131665
[25] Pérez P, Gangnet M, Blake A. Poisson image editing[J]. ACM Transactions on Graphics, 2003, 22(3):313-318.
doi: 10.1145/882262.882269
[26] Pan H. Cloud removal for remote sensing imagery via spatial attention generative adversarial network[J/OL].(2020-11-14)[2020-09-28]. https://arxiv.org/abs/2009.13015.
[1] 薛娟, 俞琳锋, 林起楠, 刘广, 黄华国. 基于Sentinel-1多时相InSAR影像的云南松切梢小蠹危害程度监测[J]. 国土资源遥感, 2018, 30(4): 108-114.
[2] 国贤玉, 李坤, 王志勇, 李宏宇, 杨知. 基于SVM+SFS策略的多时相紧致极化SAR水稻精细分类[J]. 国土资源遥感, 2018, 30(4): 20-27.
[3] 章钊颖, 鲁奕岑, 吴国周, 王永利. 基于多时相Sentinel-1A SAR数据草原地区降水量反演[J]. 国土资源遥感, 2017, 29(4): 156-160.
[4] 周晓宇, 陈富龙, 姜爱辉. 基于SVM雷达卧龙大熊猫栖息地森林成图[J]. 国土资源遥感, 2017, 29(3): 85-91.
[5] 邵艳坡, 洪友堂. 遥感影像相对辐射校正的PIF方法[J]. 国土资源遥感, 2017, 29(1): 7-13.
[6] 鲁锦涛, 马丽. 基于流形对齐的高光谱遥感图像降维和分类算法[J]. 国土资源遥感, 2017, 29(1): 104-109.
[7] 郭红燕, 邹立群, 张友焱, 刘扬, 董文彤, 周红英. 面向石油遥感信息服务的多时相影像数据管理[J]. 国土资源遥感, 2016, 28(2): 188-192.
[8] 徐超, 詹金瑞, 潘耀忠, 朱文泉. 基于多时相TM图像的耕地信息提取[J]. 国土资源遥感, 2013, 25(4): 166-173.
[9] 祝燕, 张志, 张芹, 刘凤梅, 刘文婷. 矿山环境遥感动态监测中的相对辐射校正方法研究[J]. 国土资源遥感, 2010, 22(3): 47-50.
[10] 栗敏光, 李英成, 薛艳丽, 叶冬梅. 多源多时相遥感数据面向对象海岛识别方法探讨[J]. 国土资源遥感, 2010, 22(1): 65-68.
[11] 贾珅玥, 肖鹏峰. 基于多时相图谱的青藏高原湖泊变化检测研究[J]. 国土资源遥感, 2009, 21(4): 78-81.
[12] 李淑坤, 李培军, 程涛. 加入多时相纹理的遥感变化检测[J]. 国土资源遥感, 2009, 21(3): 35-40.
[13] 金宝石, 周葆华. 安庆沿江湖泊近20年水域多时相动态演变[J]. 国土资源遥感, 2008, 20(3): 74-77.
[14] 王平, 刘少峰. 基于多时相卫星图像的稀土矿开发变化检测[J]. 国土资源遥感, 2007, 19(2): 65-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发