Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (4): 136-143    DOI: 10.6046/zrzyyg.2021349
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于ENDVI-SI3特征空间的盐渍化反演模型及风险评估
张思源1,2(), 岳楚1,2, 袁国礼2(), 袁帅1, 庞文强3, 李俊2
1.中国地质调查局呼和浩特自然资源综合调查中心,呼和浩特 010010
2.中国地质大学(北京)地球科学与资源学院,北京 100083
3.巴彦淖尔市现代农牧事业发展中心,巴彦淖尔 015000
Salinization inversion model based on ENDVI-SI3 characteristic space and risk assessment
ZHANG Siyuan1,2(), YUE Chu1,2, YUAN Guoli2(), YUAN Shuai1, PANG Wenqiang3, LI Jun2
1. Hohhot General Survey of Natural Resources Center, China Geological Survey, Hohhot 010010, China
2. School of Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China
3. Bayannur City Modern Agriculture and Animal Husbandry Development Center, Bayannur 015000, China
全文: PDF(2320 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

土壤盐渍化是干旱和半干旱地区面临的最严重环境风险,利用特征参量建立特征空间的遥感方法为土壤盐渍化的及时监测与反演提供了更有效、更经济的工具和技术。目前反演盐渍化的特征参量多选用归一化植被指数(normalized difference vegetation index,NDVI)和盐分指数(salinity index,SI),缺乏精细化分析与地区适用性。以内蒙古乌拉特前旗为研究区,基于Landsat8 OLI数据,选用引入短波红外波段的增强型归一化植被指数(enhanced normalized difference vegetation index,ENDVI)和半干旱区反演效果最优的盐分指数3(salinity index 3,SI3)构建ENDVI-SI3特征空间,建立改进型盐渍化监测指数(improved salinization monitoring index,ISMI)模型。结果表明,ISMI与土壤含盐量相关系数达0.82,反演精度优于NDVI,EDNVI和SI3(-0.66,-0.70和0.75),在ISMI基础上实现了内蒙古乌拉特前旗土壤盐渍化的定量反演分析与风险评估,为半干旱区盐渍化反演特征空间中特征参量的选取提供了优化思路。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张思源
岳楚
袁国礼
袁帅
庞文强
李俊
关键词 盐渍化遥感模型增强型归一化植被指数(ENDVI)盐分指数3(SI3)特征空间风险评估    
Abstract

Soil salinization is the most severe environmental risk in arid and semi-arid areas. The remote sensing method that constructs a characteristic space based on characteristic parameters provides an effective and economical tool and technique for the timely monitoring and inversion of soil salinization. Presently, the normalized difference vegetation index (NDVI) and the salinity index (SI) are mainly selected as the characteristic parameters for salinization inversion, while refined analysis and regional applicability are lacking. This study investigated Urad Front Banner in Inner Mongolia based on the Landsat8 OLI data. The ENDVI-SI3 characteristic space was constructed using the enhanced normalized difference vegetation index (ENDVI) that introduced the shortwave infrared band and the salinity index 3 (SI3) with the best inversion effect for semi-arid areas. Accordingly, the improved salinization monitoring index (ISMI) model was built. The results show that the correlation coefficient between ISMI and soil salt content was up to 0.82, and the inversion precision of the ISMI model was higher than that of NDVI, EDNVI, and SI3 (-0.66, -0.70, and 0.75, respectively). Based on the ISMI, this study achieved the quantitative inversion analysis and risk assessment of soil salinization in Urad Front Banner. This study provides an approach for selecting the optimal characteristic parameters of the characteristic space in the salinization inversion of semi-arid areas.

Key wordssalinization    remote sensing model    ENDVI    SI3    feature space    risk assessment
收稿日期: 2021-10-21      出版日期: 2022-12-27
ZTFLH:  TP79  
基金资助:中国地质调查局项目“黄河流域巴彦淖尔地区地表基质层调查”(DD20211591);国家自然科学基金项目“典型人为有机质记录反演西藏地区近代湖泊沉积环境演变”(41872100)
通讯作者: 袁国礼(1971-),男,教授,主要从事岩石地球化学与环境地球化学研究。Email: yuangl@cugb.edu.cn
作者简介: 张思源(1991-),男,工程师,主要从事自然资源综合调查研究。Email: zhangsy5@qq.com
引用本文:   
张思源, 岳楚, 袁国礼, 袁帅, 庞文强, 李俊. 基于ENDVI-SI3特征空间的盐渍化反演模型及风险评估[J]. 自然资源遥感, 2022, 34(4): 136-143.
ZHANG Siyuan, YUE Chu, YUAN Guoli, YUAN Shuai, PANG Wenqiang, LI Jun. Salinization inversion model based on ENDVI-SI3 characteristic space and risk assessment. Remote Sensing for Natural Resources, 2022, 34(4): 136-143.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021349      或      https://www.gtzyyg.com/CN/Y2022/V34/I4/136
Fig.1  乌拉特前旗地理位置示意图
Fig.2  ENDVI-SI3二维散点图
指数 全称 公式 相关系数
NDVI 归一化植被指数 N D V I = N I R - R N I R + R -0.66
ENDVI 增强型归一化植被指数 E N D V I = N I R - R + S W I R 2 N I R + R + S W I R 2 -0.70
EVI 增强植被指数 E V I = 2.5 N I R - R N I R + 6 R - 7.5 B + 1 -0.54
EEVI 扩展型增强植被指数 E E V I = 2.5 N I R - R + S W I R 2 N I R + 6 R - 7.5 B + 1 -0.46
MSAVI 修正土壤调节植被指数 M S A V I = 1 2 [ ( 2 N I R - 1 ) - 2 ( N I R + 1 ) - 8 ( N I R - R ) -0.67
SI 盐分指数 S I = B R 0.72
ESI 增强型盐分指数 E S I 1 = B R + S W I R 1 S W I R 1 0.73
SI3 盐分指数3 S I 3 = G 2 + R 2 0.75
ESI3 增强型盐分指数3 E S I 3 = ( G 2 + R 2 + S W I R ) 2 S W I R 1 0.64
S2 盐分指数 S 2 = B - R B + R 0.62
ES2 增强型盐分指数 E S 2 = B - R + S W I R 2 B + R + S W I R 2 -0.61
SI-T 盐分指数 S I - T = R N I R × 100 0.68
ESI-T 增强型盐分指数 E S I - T = R N I R + S W I R 2 0.73
NDSI 归一化盐分指数 N D S I = R - N I R R + N I R 0.43
ENDSI 增强型归一化盐分指数 E N D S I = R - N I R R + N I R + S W I R 2 0.61
Tab.1  指数相关性分析结果
盐渍化程度 土壤含盐量/
(g·kg-1)
ISMI 植被生
长状况
面积/km2 占比/%
非盐渍土 <1 <0.20 正常 907.44 18.89
弱度盐渍土 [1,2) [0.20,0.27) 轻微 2 591.16 53.93
中度盐渍土 [2,4) [0.27,0.41) 受限 968.72 20.16
强度盐渍土 [4,6) [0.41,0.56) 不良 174.42 3.63
盐土 ≥6 ≥0.56 困难 163.20 3.40
Tab.2  基于ISMI的盐渍土壤分级
Fig.3  基于ISMI的乌拉特前旗盐渍土壤空间分布
变量 相关系
r
显著水
P
样本
灰色关
联度 γ
权重 w
镁离子/(g·kg-1) 0.836 <0.001 66 0.909 0.126
含盐量/(g·kg-1) 0.820 <0.001 66 0.917 0.127
氯离子/(g·kg-1) 0.772 <0.001 66 0.897 0.124
钠离子/(g·kg-1) 0.752 <0.001 66 0.884 0.123
硫酸根/(g·kg-1) 0.635 <0.001 66 0.833 0.115
钙离子/(g·kg-1) 0.524 <0.001 66 0.949 0.132
有机质/(g·kg-1) -0.327 0.007 66 0.924 0.128
有效磷/(mg·kg-1) 0.289 0.019 66 0.900 0.125
钾离子/(g·kg-1) 0.228 0.065 66 0.949
pH 0.212 0.087 66 0.958
全氮/(g·kg-1) -0.203 0.103 66 0.927
容重/(g·cm-3) -0.196 0.115 66 0.952
碳酸氢根/(g·kg-1) 0.061 0.629 66 0.939
Tab.3  盐渍化风险评估因子相关性筛选及赋权
Fig.4  SRAV与ISMI的函数关系
Fig.5  乌拉特前旗土壤盐渍化风险评估空间分布
风险等级 风险程度 风险值 面积/km2 面积比例/%
1 风险极大 ≥0.75 401.17 8.31
2 风险很大 [0.5,0.75) 1 420.06 29.43
3 风险较大 [0.3,0.5) 803.66 16.66
4 一般风险 [0.2,0.3) 796.60 16.51
5 风险较小 <0.2 1 403.39 29.09
Tab.4  乌拉特前旗土壤盐渍化风险评估分级
[1] 朱庭芸. 灌区土壤盐渍化防治[M]. 北京: 农业出版社, 1992:32-37.
Zhu T Y. Soils-salinity control in irrigation area[M]. Beijing: Agricultural Press, 1992:32-37.
[2] Kovda A. Loss of productive land due to salinization[J]. Ambio, 1983, 12(2):1-4.
[3] 杨劲松. 中国盐渍土研究的发展历程与展望[J]. 土壤学报, 2008(5):837-845.
Yang J S. Development and prospect of the research on salt-affected soils in China[J]. Acta Pedologica Sinica, 2008(5):837-845.
[4] Allbed A, Kumar L. Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology:A review[J]. Advances in Remote Sensing, 2013, 2(4):373-385.
doi: 10.4236/ars.2013.24040
[5] Metternicht G I, Zinck J A. Remote sensing of soil salinity:Potentials and constraints[J]. Remote Sensing of Environment, 2003, 85(1):1-20.
doi: 10.1016/S0034-4257(02)00188-8
[6] 赵剑桥. 土壤盐渍化的遥感监测方法及应用[J]. 农村经济与科技, 2018, 29(7):41-42.
Zhao J Q. Remote sensing monitoring method of soil salinization and its application[J]. Rural Economy and Science-Technology, 2018, 29(7):41-42.
[7] Thiam S, Villamor G B, Faye L C, et al. Monitoring land use and soil salinity changes in coastal landscape:A case study from Senegal[J]. Environmental Monitoring and Assessment, 2021, 193(5): 259-260.
doi: 10.1007/s10661-021-08958-7
[8] 潘肖燕, 崔江慧, 杨江燕, 等. 基于SDI校正指数的滨海平原盐渍化生态风险评价[J]. 农业资源与环境学报, 2020, 37(5):709-718.
Pan X Y, Cui J H, Yang J Y, et al. Ecological risk assessment of salinization in coastal plain based on SDI correction index[J]. Journal of Agricultural Resources and Environment, 2020, 37(5):709-718.
[9] 樊彦国, 张维康, 刘敬一. 基于植被指数-盐分指数特征空间的黄河三角洲盐渍化遥感监测研究[J]. 山东农业科学, 2016, 48(5):137-141.
Fan Y G, Zhang W K, Liu J Y. Remote sensing monitoring model of soil salinization in the Yellow River delta zone based on vegetation index-salt index feature space[J]. Shandong Agricultural Sciences, 2016, 48(5):137-141.
[10] 哈学萍, 丁建丽, 塔西甫拉提·特依拜, 等. 基于SI-Albedo特征空间的土壤盐渍化遥感监测指数研究[J]. 土壤学报, 2009, 46(4):698-703.
Ha X P, Ding J L, Tashpolat T, et al. SI-Albedo space-based remote sensing synthesis index models for monitoring of soil salinization[J]. Acta Pedologica Sinica, 2009, 46(4):698-703.
[11] 王飞, 丁建丽, 伍漫春. 基于NDVI-SI特征空间的土壤盐渍化遥感模型[J]. 农业工程学报, 2010, 26(8):168-173,8.
Wang F, Ding J L, Wu M C. Remote sensing monitoring models of soil salinization based in NDVI-SI feature space[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(8):168-173,8.
[12] 陈实, 徐斌, 金云翔, 等. 北疆农区土壤盐渍化遥感监测及其时空特征分析[J]. 地理科学, 2015, 35(12):1607-1615.
doi: 10.13249/j.cnki.sgs.2015.012.1607
Chen S, Xu B, Jin Y X, et al. Remote sensing monitoring and spatial-temporal characteristics analysis of soil salinization in agricultural area of northern Xinjiang[J]. Scientia Geographica Sinica, 2015, 35(12):1607-1615.
doi: 10.13249/j.cnki.sgs.2015.012.1607
[13] 张添佑, 王玲, 王辉, 等. 玛纳斯河流域盐渍化灌区生态环境遥感监测研究[J]. 生态学报, 2017, 37(9):3009-3018.
Zhang T Y, Wang L, Wang H, et al. Assessment of soil salinization ecological environment change in the Manas River basin using remote sensing technology[J]. Acta Ecologica Sinica, 2017, 37(9):3009-3018.
[14] 史海滨, 杨树青, 李瑞平, 等. 内蒙古河套灌区水盐运动与盐渍化防治研究展望[J]. 灌溉排水学报, 2020, 39(8):1-17.
Shi H B, Yang S Q, Li R P, et al. Soil water and salt movement and soilsalinization control in Hetao irrigation district:Current state and future prospect[J]. Journal of Irrigation and Drainage, 2020, 39(8):1-17.
[15] 卢晶, 张绪教, 叶培盛, 等. 基于SI-MSAVI特征空间的河套灌区盐碱化遥感监测研究[J]. 国土资源遥感, 2020, 32(1):169-175.doi: 10.6046/gtzyyg.2020.01.23.
doi: 10.6046/gtzyyg.2020.01.23
Lu J, Zhang X J, Ye P S, et al. Remote sensing monitoring of salinization in Hetao irrigation district based on SI-MSAVI feature space[J]. Remote Sensing for Land and Resources, 2020, 32(1):169-175.doi: 10.6046/gtzyyg.2020.01.23.
doi: 10.6046/gtzyyg.2020.01.23
[16] 孙国军, 孙涛. 乌拉特前旗现代绿洲农业发展对策研究[J]. 地域研究与开发, 2011, 30(6):136-139.
Sun G J, Sun T. Study on modern oasis agricultural influencing factors and its countermeasures in Wulate County[J]. Areal Research and Development, 2011, 30(6):136-139.
[17] 孙国军. 基于BP人工神经网络的内蒙古乌拉特前旗生态环境脆弱性评价[D]. 兰州: 西北师范大学, 2009.
Sun G J. Evaluation of eco-environment fragilily with BP artificial neural networks in Wulate Country,Inner Mongolia,China[D]. Lanzhou: Northwest Normal University, 2009.
[18] 王学全, 高前兆, 卢琦. 内蒙古河套灌区水资源高效利用与盐渍化调控[J]. 干旱区资源与环境, 2005(6):120-125.
Wang X Q, Gao Q Z, Lu Q. Effective use of water resources and salinity and waterlogging control in the Hetao irrigation area of Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2005(6):120-125.
[19] 李超, 文天晟, 张凤荣, 等. 半干旱沙区土类/亚类的遥感调查制图方法[J]. 农业工程学报, 2018, 34(6):189-196.
Li C, Wen T S, Zhang F R, et al. Method for remote sensing survey and mapping of soil types and subtypes in semi-arid sand region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(6):189-196.
[20] Weiss E, Marsh S E, Pfirman E S. Application of NOAA-AVHRR NDVI time-series data to assess changes in Saudi Arabia’s rangelands[J]. International Journal of Remote Sensing, 2001, 22(6): 1005-1028.
doi: 10.1080/014311601300074540
[21] Tilley D R, Ahmed M, Son J H, et al. Hyperspectral reflectance response of freshwater macrophytes to salinity in a brackish subtropical marsh[J]. Journal of Environmental Quality, 2007, 36(3): 780-789.
pmid: 17412913
[22] 孙媛. 基于土壤和植被光谱信息的宁夏银北地区土壤盐碱化程度反演研究[D]. 银川: 宁夏大学, 2020.
Sun Y. Inversion of the degree of soil salinization based on spectra of soil and vegetation in northern Yinchuan Plain of Ningxia[D]. Yinchuan: Ningxia University, 2020.
[23] 陈红艳, 赵庚星, 陈敬春, 等. 基于改进植被指数的黄河口区盐渍土盐分遥感反演[J]. 农业工程学报, 2015, 31(5):107-112.
Chen H Y, Zhao G X, Chen J C, et al. Remote sensing inversion of saline soil salinity based on modified vegetation index in estuary area of Yellow River[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5):107-112.
[24] Allbed A, Kumar L, Aldakheel Y Y. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region[J]. Geoderma, 2014, 230:1-8.
[25] Khan N M, Rastoskuev V V, Sato Y, et al. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators[J]. Agricultural Water Management, 2005, 77: 96-109.
doi: 10.1016/j.agwat.2004.09.038
[26] Bannari A, Guedon A M, El-Harti A, et al. Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO-1) sensor[J]. Communications in Soil Science and Plant Analysis, 2009, 39: 2795-2811.
doi: 10.1080/00103620802432717
[27] 王爽, 丁建丽, 王璐, 等. 基于地表光谱建模的区域土壤盐渍化遥感监测研究[J]. 干旱区地理, 2016, 39(1):190-198.
Wang S, Ding J L, Wang L, et al. Remote sensing monitoring of soil salinization based on surface spectral modeling[J]. Arid Land Geo-graphy, 2016, 39(1):190-198.
[28] 张俊华, 孙媛, 贾科利, 等. 不同盐结皮光谱特征及其盐渍化信息预测研究[J]. 农业机械学报, 2018, 49(12):325-333,370.
Zhang J H, Sun Y, Jia K L, et al. Spectral characteristics and salinization information prediction of different soil salt crusts[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(12):325-333,370.
[29] Al-Khakani E T, Yousif S R. An assessment of soil salinity and vegetation cover changes for a part of An-Najaf governorate using remote sensing data[J]. Journal of Physics: Conference Series, 2019, 1234: 012023.
doi: 10.1088/1742-6596/1234/1/012023
[30] Verstraete M M, Pinty B. Designing optimal spectral indexes for remote sensing applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 4(5):1254-1265.
[31] 王遵亲, 祝寿泉, 俞仁培, 等. 中国盐渍土[M]. 北京: 科学出版社, 1993:333-335.
Wang Z Q, Zhu S Q, Yu R P, et al. Salt-affected soils in China[M]. Beijing: Science Press, 1993:333-335.
[32] 李自珍, 李维德, 石洪华, 等. 生态风险灰色评价模型及其在绿洲盐渍化农田生态系统中的应用[J]. 中国沙漠, 2002(6):95-100.
Li Z Z, Li W D, Shi H H, et al. Gray model for ecological risk assessment and its application in salinization oasis agroecosystem[J]. Journal of Desert Research, 2002(6):95-100.
[33] 李仙岳, 崔佳琪, 史海滨, 等. 基于指示Kriging的土壤盐渍化风险与地下水环境分析[J]. 农业机械学报, 2021, 52(8):297-306.
Li X Y, Cui J Q, Shi H B, et al. Analysis of soil salinization risk and groundwater environment based on indicator Kriging[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8):297-306.
[34] 李冬顺, 杨劲松, 姚荣江. 生态风险分析用于苏北滩涂土壤盐渍化风险评估研究[J]. 土壤学报, 2010, 47(5):857-864.
Li D S, Yang J S, Yao R J. Application of ecological risk analysis to soil salinization risk assessment of coastal tidal flat in north Jiangsu Province[J]. Acta Pedologica Sinica, 2010, 47(5):857-864.
[1] 代云豪, 管瑶, 冯春涌, 蒋敏, 贺兴宏. 基于光谱指数建模的阿拉尔垦区土壤盐渍化信息提取与分析[J]. 自然资源遥感, 2023, 35(1): 205-212.
[2] 李星佑, 张飞, 王筝. 土壤盐渍化遥感监测模型构建方法现状与发展趋势[J]. 自然资源遥感, 2022, 34(4): 11-21.
[3] 吴霞, 王长军, 樊丽琴, 李磊. 基于多光谱遥感的盐渍化评价指数对宁夏银北灌区土壤盐度预测的适用性分析[J]. 国土资源遥感, 2021, 33(2): 124-133.
[4] 卢晶, 张绪教, 叶培盛, 吴杭, 王涛. 基于SI-MSAVI特征空间的河套灌区盐碱化遥感监测研究[J]. 国土资源遥感, 2020, 32(1): 169-175.
[5] 刘英, 岳辉, 侯恩科. MODIS数据在陕西省干旱监测中的应用[J]. 国土资源遥感, 2019, 31(2): 172-179.
[6] 冯娟, 丁建丽, 魏雯瑜. 基于雷达数据的区域土壤盐渍化监测[J]. 国土资源遥感, 2019, 31(1): 195-203.
[7] 张雅莉, 塔西甫拉提·特依拜, 阿尔达克·克里木, 张东, 依力亚斯江·努尔麦麦提, 张飞. 基于Landsat8 OLI影像光谱的土壤盐分估算模型研究[J]. 国土资源遥感, 2018, 30(1): 87-94.
[8] 关红, 贾科利, 张至楠, 马欣. 盐渍化土壤光谱特征分析与建模[J]. 国土资源遥感, 2015, 27(2): 100-104.
[9] 张利华. 基于ALOS影像的内蒙古杭锦后旗土地盐渍化程度分级[J]. 国土资源遥感, 2015, 27(1): 121-126.
[10] 李晓明, 杨劲松, 余美, 杨奇勇, 刘梅先. 基于电磁感应的干旱区土壤盐渍化定量遥感研究[J]. 国土资源遥感, 2012, 24(1): 53-58.
[11] 戚浩平, 翁永玲, 赵福岳, 方洪宾. 茶卡-共和盆地土壤盐分与光谱特征研究[J]. 国土资源遥感, 2010, 22(s1): 4-8.
[12] 李会志, 李新国, 王影. 基于遥感技术的开都河下游绿洲区土壤盐渍化动态监测研究[J]. 国土资源遥感, 2010, 22(1): 85-88.
[13] 牛婷, 李霞. 塔里木河下游植被恢复遥感模型建立[J]. 国土资源遥感, 2008, 20(2): 79-83.
[14] 高磊, 覃志豪, 卢丽萍. 基于植被指数和地表温度特征空间的农业干旱监测模型研究综述[J]. 国土资源遥感, 2007, 19(3): 1-7.
[15] 桂德竹, 李钢, 张成成. 基于多特征信息融合的面向对象的高光谱图像分类[J]. 国土资源遥感, 2007, 19(2): 31-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发