Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (1): 189-197    DOI: 10.6046/zrzyyg.2022047
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于Landsat8 OLI影像干旱区绿洲土壤含盐量反演
黄晓宇1(), 王雪梅1,2(), 卡吾恰提·白山1
1.新疆师范大学地理科学与旅游学院,乌鲁木齐 830054
2.新疆维吾尔自治区重点实验室“新疆干旱区湖泊环境与资源实验室”,乌鲁木齐 830054
Inversion of soil salinity of an oasis in an arid area based on Landsat8 OLI images
HUANG Xiaoyu1(), WANG Xuemei1,2(), KAWUQIATI Baishan1
1. College of Geographic Science and Tourism, Xinjiang Normal University, Urumqi 830054, China
2. Xinjiang Uygur Autonomous Region Key Laboratory “Xinjiang Arid Lake Environment and Resources Laboratory”, Urumqi 830054, China
全文: PDF(3922 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

利用遥感技术进行土壤含盐量的快速检测可为土壤盐渍化治理和绿洲农业合理开发提供科学指导。基于渭干河—库车河三角洲绿洲采集的95个土壤样品,采用光谱指数、波段反射率与实测土壤含盐量,运用多元线性回归、偏最小二乘回归、支持向量机回归和随机森林回归方法构建土壤含盐量估测模型,并利用最优估测结果对研究区土壤含盐量的空间分布格局进行遥感反演。结果表明: 通过全子集回归法筛选出与土壤含盐量相关显著的9个光谱因子,相关系数均在0.5以上(P<0.01)。其中盐分指数中SI-T与土壤含盐量的相关系数最大为0.648; 对比4种反演模型的估测精度,拟合的效果由高到低依次为随机森林回归>支持向量机回归>偏最小二乘回归>多元线性回归。其中随机森林模型拟合精度表现最佳,训练集和验证集的决定系数分别为0.870和0.766; 相对分析误差分别为2.792和2.105,值均大于2,表明模型反演效果较好,有稳定的估测能力; 由随机森林模型的反演结果来看,第Ⅰ等级和第Ⅱ等级占比达到41.62%,分布于绿洲内部的耕作区; 第Ⅲ,Ⅳ和第Ⅴ等级区共占比56.41%,主要分布在绿洲外围与沙漠的交错带和荒漠区。采用随机森林机器学习建模方法对土壤含盐量进行反演,估测效果明显优于传统的统计模型,可为干旱区绿洲土壤盐渍化监测提供参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄晓宇
王雪梅
卡吾恰提·白山
关键词 光谱指数机器学习模型土壤含盐量遥感反演干旱区绿洲    
Abstract

The rapid detection of soil salinity using remote sensing technology can scientifically guide the soil salinization control and the rational development of oasis agriculture. Based on 95 soil samples from the oasis of the Weigan-Kuqa River delta, this study established four soil salinity estimation models of multiple linear regression, partial least squares regression (PLSR), support vector machine regression (SVR), and random forest regression using the spectral index, band reflectance, and the measured soil salinity. Then, it conducted the remote sensing inversion for the spatial distribution pattern of the soil salinity in the study area using the optimal estimation results. The results are as follows: ① Nine spectral factors that were significantly related to soil salinity were screened using the all-subsets regression method, with correlation coefficients of all above 0.5 (P < 0.01). Among them, the correlation coefficient between salinity index SI-T and the soil salinity was the highest (0.648); ② The comparison of estimation precision show that the fitting effect of the four inversion models was in the order of random forest regression > SVR > PLSR > multiple linear regression. Among these models, the random forest model had the best fitting precision. Its training and validation sets had coefficients of determination(R2) of 0.870 and 0.766, respectively, with relative percent deviation (RPD) of 2.792 and 2.105, respectively, both of which were greater than 2. These results indicate that the random forest model had a good inversion effect and stable estimation capacity; ③ According to the inversion results of the random forest model, grade I and II zones account for 41.62% and are distributed in the cultivated land area inside the oasis; grade III, IV, and V zones account for 56.41% and are primarily distributed in the desert and the desert-oasis ecotones. Therefore, compared with conventional statistical models, the random forest modeling method can yield significantly better estimation effects in the inversion of soil salinity. This study can be used as a reference for the monitoring of soil salinization in oases in arid areas.

Key wordsspectral index    machine learning model    soil salinity    remote sensing inversion    oasis in an arid area
收稿日期: 2022-02-11      出版日期: 2023-03-20
ZTFLH:  P935.1  
  TP79  
基金资助:新疆维吾尔自治区自然科学基金项目“和田地区土地荒漠化时空演变及预警研究”(2020D01A79);国家自然科学基金项目“塔里木盆地北缘绿洲-荒漠过渡带植被对土壤盐渍化的响应研究”(41561051)
通讯作者: 王雪梅(1976-),女,教授,博士,硕士生导师,研究方向为干旱区资源环境遥感技术应用研究。Email: wangxm_1225@sina.com
作者简介: 黄晓宇(1995-),男,硕士研究生,研究方向为资源环境遥感。Email: 18699576547@163.com
引用本文:   
黄晓宇, 王雪梅, 卡吾恰提·白山. 基于Landsat8 OLI影像干旱区绿洲土壤含盐量反演[J]. 自然资源遥感, 2023, 35(1): 189-197.
HUANG Xiaoyu, WANG Xuemei, KAWUQIATI Baishan. Inversion of soil salinity of an oasis in an arid area based on Landsat8 OLI images. Remote Sensing for Natural Resources, 2023, 35(1): 189-197.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022047      或      https://www.gtzyyg.com/CN/Y2023/V35/I1/189
Fig.1  研究区采样点分布
光谱指数 计算公式 参考文献
NDVI NDVI=(NIR-Red)/(NIR+Red) [10]
ENDVI ENDVI=(NIR+SWIR2-Red)/(NIR+SWIR2+Red) [10]
DVI DVI=NIR-Red [10]
CRSI CRSI=[(NIR·Red-Green·Blue)/(NIR·Red+Green·Blue)]0.5 [15]
EVI EVI=2.5[(NIR-Red)/(NIR+6Red-7.5Blue+1)] [12]
EEVI EEVI=2.5[(NIR+SWIR1-Red)/(NIR+SWIR1+6Red-7.5Blue+1)] [12]
NDSI NDSI=(Red-NIR)/(Red+NIR) [17]
S3 S3=(Green·Red)/Blue [17]
S5 S5=(Blue·Red)/Green [17]
SI4 SI4= ( G r e e n 2 + R e d 2 ) 0.5 [10]
SI-T SI-T=(Red/NIR)×100 [18]
Tab.1  光谱指数计算公式
样本类型 样本
数/个
SSC/(g?kg-1) 变异系
数/%
最大值 最小值 平均值 标准差
总体样本 95 216.375 0.525 26.349 42.648 161.859
训练样本 66 216.375 0.525 25.576 43.265 169.159
验证样本 29 145.325 0.825 28.108 41.908 149.098
Tab.2  土壤样本基本统计特征
等级 SSC/
(g?kg-1)
地表植被植被类型 生长情况
<10 小麦、玉米和棉花等农作物以及红枣和核桃等经济作物 不受抑制
[10,35) 以棉花等农作物以及芦苇等草本等为主 稍有抑制
[35,60) 芦苇、白刺等草本以及盐穗木、盐节木等灌木 中等抑制
[60,85] 盐穗木、盐节木等灌木以及柽柳、胡杨等乔木 严重抑制
>85 以盐穗木、柽柳和胡杨等乔木为主 极严重抑制
Tab.3  SSC分级标准
变量 NDVI ENDVI DVI CRSI EVI EEVI NDSI S3 S5
相关系数 -0.637**① -0.605** -0.607** -0.504** -0.619** -0.601** 0.637** 0.636** 0.625**
变量 SI4 SI-T 海岸波段 蓝光波段 绿光波段 红光波段 近红外波段 短波红外1波段 短波红外2波段
相关系数 0.614** 0.648** 0.535** 0.551** 0.577** 0.632** -0.523** 0.638** 0.657**
Tab.4  建模变量与SSC的相关性
Fig.2  光谱指数与光谱反射率空间分布
建模方法 训练集 验证集
R2 RMSE/
(g·kg-1)
RPD R2 RMSE/
(g·kg-1)
RPD
MLR 0.480 3.098 1.397 0.599 2.608 1.607
PLSR 0.474 3.114 1.390 0.721 2.512 1.669
SVMR 0.575 2.801 1.545 0.594 2.624 1.598
RFR 0.870 1.550 2.792 0.766 1.991 2.105
Tab.5  反演模型的精度对比
Fig.3  SSC不同反演模型的实测值-估测值散点图
Fig.4  研究区SSC空间分布
[1] Abuelgasim A, Ammad R. Mapping soil salinity in arid and semi-arid regions using Landsat8 OLI satellite data[J]. Remote Sensing Applications: Society and Environment, 2019, 13:415-425.
doi: 10.1016/j.rsase.2018.12.010
[2] Abdennour M A, Douaoui A, Piccini C, et al. Predictive mapping of soil electrical conductivity as a Proxy of soil salinity in south-east of Algeria[J]. Environmental and Sustainability Indicators, 2020, 8:100087.
doi: 10.1016/j.indic.2020.100087
[3] Eswar D, Karuppusamy R, Chellamuthu S. Drivers of soil salinity and their correlation with climate change[J]. Current Opinion in Environmental Sustainability, 2021, 50:310-318.
doi: 10.1016/j.cosust.2020.10.015
[4] Khadim F K, Su H, Xu L, et al. Soil salinity mapping in Everglades National Park using remote sensing techniques and vegetation salt tolerance[J]. Physics and Chemistry of the Earth, 2019, 110:31-50.
doi: 10.1016/j.pce.2019.01.004
[5] Hammam A A, Mohamed E S. Mapping soil salinity in the East Nile Delta using several methodological approaches of salinity assessment[J]. The Egyptian Journal of Remote Sensing and Space Science, 2020, 23(2):125-131.
doi: 10.1016/j.ejrs.2018.11.002
[6] 王遵亲, 祝寿泉, 俞仁培, 等. 中国盐渍土[M]. 北京: 科学出版社, 1993:7-78.
Wang Z Q, Zhu S Q, Yu R P, et al. Chinese saline soil[M]. Beijing: Science Press, 1993:7-78.
[7] 周磊, 贺聪聪, 吕爱锋, 等. 柴达木盆地土壤盐渍化程度快速动态监测[J]. 测绘科学, 2021, 46(7):99-106,114.
Zhou L, He C C, Lyu A F, et al. Research on quick dynamic monitoring of soil salinization in Qaidam Basin[J]. Science of Surveying and Mapping, 2021, 46(7):99-106,114.
[8] 张荣群, 乔月霞, 薛佳妮. 银川平原土壤盐渍化与土地利用强度的空间关联分析[J]. 地球信息科学学报, 2015, 17(5):598-606.
doi: 10.3724/SP.J.1047.2015.00598
Zhang R Q, Qiao Y X, Xue J N. Spatial relationship analysis between the soil salinization and land use intensity in Yinchuan Plain[J]. Journal of Geo-Information Science, 2015, 17(5):598-606.
[9] 张素铭, 赵庚星, 王卓然, 等. 滨海盐渍区土壤盐分遥感反演及动态监测[J]. 农业资源与环境学报, 2018, 35(4):349-358.
Zhang S M, Zhao G X, Wang Z R, et al. Remote sensing inversion and dynamic monitoring of soil salt in coastal saline area[J]. Journal of Agricultural Resources and Environment, 2018, 35(4):349-358.
[10] 周晓红, 张飞, 张海威, 等. 艾比湖湿地自然保护区土壤盐分多光谱遥感反演模型[J]. 光谱学与光谱分析, 2019, 39(4):1229-1235.
Zhou X H, Zhang F, Zhang H W, et al. A study of soil salinity inversion based on multispectral remote sensing index in Ebinur Lake wetland nature reserve[J]. Spectroscopy and Spectral Analysis, 2019, 39(4):1229-1235.
[11] 张同瑞, 赵庚星, 高明秀, 等. 基于近地面多光谱的黄河三角洲典型地区土壤含盐量估算研究[J]. 光谱学与光谱分析, 2016, 36(1):248-253.
Zhang T R, Zhao G X, Gao M X, et al. Soil salinity estimation based on near-ground multispectral imagery in typical area of the Yellow River Delta[J]. Spectroscopy and Spectral Analysis, 2016, 36(1):248-253.
[12] 奚雪, 赵庚星, 高鹏, 等. 基于Sentinel卫星及无人机多光谱的滨海冬小麦种植区土壤盐分反演研究——以黄三角垦利区为例[J]. 中国农业科学, 2020, 53(24):5005-5016.
doi: 10.3864/j.issn.0578-1752.2020.24.004
Xi X, Zhao G X, Gao P, et al. Inversion of soil salinity in coastal winter wheat growing area based on sentinel satellite and unmanned aerial vehicle multi-spectrum:A case study in Kenli District of the Yellow River Delta[J]. Scientia Agricultura Sinica, 2020, 53(24):5005-5016.
[13] 陈红艳, 赵庚星, 陈敬春, 等. 基于改进植被指数的黄河口区盐渍土盐分遥感反演[J]. 农业工程学报, 2015, 31(5):107-114.
Chen H Y, Zhao G X, Chen J C, et al. Remote sensing inversion of saline soil salinity based on modified vegetation index in estuary area of Yellow River[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5):107-114.
[14] Fathizad H, Ardakani M A H, Sodaiezadeh H, et al. Investigation of the spatial and temporal variation of soil salinity using random forests in the central desert of Iran[J]. Geoderma, 2020, 365:114233.
doi: 10.1016/j.geoderma.2020.114233
[15] 何宝忠, 丁建丽, 刘博华, 等. 渭库绿洲土壤盐渍化时空变化特征[J]. 林业科学, 2019, 55(9):185-196.
He B Z, Ding J L, Liu B H, et al. Spatiotemporal variation of soil salinization in Weigan-Kuqa River delta oasis[J]. Scientia Silvae Sinicae, 2019, 55(9):185-196.
[16] Allbed A, Kumar L. Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology:A review[J]. Advances in Remote Sensing, 2013, 2:373-385.
doi: 10.4236/ars.2013.24040
[17] Wang J Z, Ding J L, Yu D L, et al. Machine learning-based detection of soil salinity in an arid desert region,Northwest China:A comparison between Landsat8 OLI and Sentinel-2 MSI[J]. The Science of the Total Environment, 2020, 707(10):136092.
doi: 10.1016/j.scitotenv.2019.136092
[18] Seifi M, Ahmadi A, Neyshabouri M R, et al. Remote and Vis-NIR spectra sensing potential for soil salinization estimation in the eastern coast of Urmia hyper saline lake,Iran[J]. Remote Sensing Applications:Society and Environment, 2020, 20:100398.
doi: 10.1016/j.rsase.2020.100398
[19] Liu Y, Zhang F, Wang C, et al. Estimating the soil salinity over partially vegetated surfaces from multispectral remote sensing image using non-negative matrix factorization[J]. Geoderma, 2019, 354:113887.
doi: 10.1016/j.geoderma.2019.113887
[20] 乔木, 周生斌, 卢磊, 等. 新疆渭干河流域土壤盐渍化时空变化及成因分析[J]. 地理科学进展, 2012, 31(7):904-910.
Qiao M, Zhou S B, Lu L, et al. Causes and spatial-temporal changes of soil salinization in Weigan River basin,Xinjiang[J]. Progress in Geography, 2012, 31(7):904-910.
[21] 张智韬, 杜瑜燕, 劳聪聪, 等. 基于雷达遥感的不同深度土壤含盐量反演模型[J]. 农业机械学报, 2020, 51(10):243-251.
Zhang Z T, Du Y Y, Lao C C, et al. Inversion model of soil salt content in different depths based on Radar remote sensing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(10):243-251.
[22] 苏雯, 丁建丽, 杨爱霞. 基于GF-1影像的渭-库绿洲外围土壤含盐量定量反演研究[J]. 中国农村水利水电, 2017(2):9-13.
Su W, Ding J L, Yang A X. Quantitative inversion of soil salinity in Weigan-Kuqa River oasis based on GF-1 image[J]. China Rural Water and Hydropower, 2017(2):9-13.
[23] 厉彦玲, 赵庚星, 常春艳, 等. OLI与HSI影像融合的土壤盐分反演模型[J]. 农业工程学报, 2017, 33(21):173-180.
Li Y L, Zhao G X, Chang C Y, et al. Soil salinity retrieval model based on OLI and HSI image fusion[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(21):173-180.
[24] 杨练兵, 陈春波, 郑宏伟, 等. 基于优化随机森林回归模型的土壤盐渍化反演[J]. 地球信息科学学报, 2021, 23(9):1662-1674.
doi: 10.12082/dqxxkx.2021.200711
Yang L B, Chen C B, Zheng H W, et al. Retrieval of soil salinity content based on random forests regression optimized by bayesian optimization algorithm and genetic algorithm[J]. Journal of Geo-Information Science, 2021, 23(9):1662-1674.
[25] 冯娟, 丁建丽, 魏雯瑜. 基于Albedo-MSAVI特征空间的渭库绿洲土壤盐渍化研究[J]. 中国农村水利水电, 2018(2):147-152.
Feng J, Ding J L, Wei W Y. A study of soil salinization in Weigan and Kuqa Rivers oasis based on Albedo-MSAVI feature space[J]. China Rural Water and Hydropower, 2018(2):147-152.
[1] 代云豪, 管瑶, 冯春涌, 蒋敏, 贺兴宏. 基于光谱指数建模的阿拉尔垦区土壤盐渍化信息提取与分析[J]. 自然资源遥感, 2023, 35(1): 205-212.
[2] 陈慧欣, 陈超, 张自力, 汪李彦, 梁锦涛. 一种基于Google Earth Engine云平台的潮间带遥感信息提取方法[J]. 自然资源遥感, 2022, 34(4): 60-67.
[3] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[4] 范嘉智, 罗宇, 谭诗琪, 马雯, 张弘豪, 刘富来. 基于FY-3C/MWRI的湖南省地表温度遥感反演评价[J]. 国土资源遥感, 2021, 33(1): 249-255.
[5] 左家旗, 王泽根, 边金虎, 李爱农, 雷光斌, 张正健. 地表不透水面比例遥感反演研究综述[J]. 国土资源遥感, 2019, 31(3): 20-28.
[6] 郑覃, 潘军, 蒋立军, 邢立新, 季悦, 于一凡, 王鹏举, 仲伟敬. 基于光谱指数的高温目标识别方法[J]. 国土资源遥感, 2019, 31(3): 51-58.
[7] 李军, 董恒, 王祥, 游林. 基于最优插值的土壤含水量遥感反演缺失数据插补[J]. 国土资源遥感, 2018, 30(2): 45-52.
[8] 孔金玲, 杨晶, 孙晓明, 杨姝, 柳富田, 杜东. 多光谱遥感影像大气校正与悬沙浓度反演——以曹妃甸近岸海域为例[J]. 国土资源遥感, 2016, 28(3): 130-137.
[9] 周亚敏, 张荣群, 马鸿元, 张健, 张小栓. 基于BP神经网络的盐湖矿物离子含量高光谱反演[J]. 国土资源遥感, 2016, 28(2): 34-40.
[10] 任哲, 陈怀亮, 王连喜, 李颖, 李琪. 利用交叉验证的小麦LAI反演模型研究[J]. 国土资源遥感, 2015, 27(4): 34-40.
[11] 鲍艳松, 毛飞, 闵锦忠, 王冬梅, 严婧. 基于FY-3B/MWRI数据的裸土区土壤湿度反演[J]. 国土资源遥感, 2014, 26(4): 131-137.
[12] 蔡蘅, 王结贵, 杨瑞霞, 李超, 吉玮, 王心源. 基于FCD模型的且末绿洲植被覆盖度时空变化分析[J]. 国土资源遥感, 2013, 25(2): 131-137.
[13] 林婷, 刘湘南, 谭正. 基于ICA和高光谱指数的水稻Zn污染监测模型[J]. 国土资源遥感, 2011, 23(2): 59-64.
[14] 魏伟, 任皓晨, 赵军, 王旭峰. 基于MODIS的ATI和TVI组合法反演石羊河流域土壤含水量[J]. 国土资源遥感, 2011, 23(2): 104-109.
[15] 孙庆先, 李茂堂, 路京选. 基于TM影像数据的五日生化需氧量浓度估计[J]. 国土资源遥感, 2009, 21(2): 82-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发