Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (3): 145-152    DOI: 10.6046/zrzyyg.2022197
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
联合改进U-Net模型和D-InSAR技术采矿沉陷提取方法
林佳惠1,2,3(), 刘广1,2,3, 范景辉4(), 赵红丽4, 白世彪5,6, 潘宏宇1,2,3
1.中国科学院空天信息创新研究院数字地球重点实验室,北京 100094
2.可持续发展大数据国际研究中心,北京 100094
3.中国科学院大学,北京 100049
4.中国自然资源航空物探遥感中心,北京 100083
5.南京师范大学海洋科学与工程学院,南京 210023
6.中国科学院、水利部成都山地灾害与环境研究所,中国科学院山地灾害与地表过程重点实验室,成都 610041
Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR
LIN Jiahui1,2,3(), LIU Guang1,2,3, FAN Jinghui4(), ZHAO Hongli4, BAI Shibiao5,6, PAN Hongyu1,2,3
1. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
2. International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
4. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
5. College of Marine Sciences and Engineering, Nanjing Normal University, Nanjing 210023, China
6. Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
全文: PDF(3020 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

矿产资源开采导致的地表沉陷不仅是矿区国土空间开发利用需要考虑的重要因素,而且对地下非法开采的区域具有明显的指征作用。矿产资源开采一般具有分布范围较广、分布不均且较分散的特点,因此快速、准确地识别并提取大区域内采矿沉陷的空间分布非常必要。本研究基于合成孔径雷达差分干涉测量技术(differential interferometric synthetic aperture Radar,D-InSAR)得到矿区多时相差分干涉相位图,并使用深度学习FCN-8s,PSPNet,Deeplabv3和U-Net模型训练网络开展采矿沉陷智能识别,结果显示U-Net模型具有较高的检测精度且用时较短。为提高采矿沉陷的语义分割提取精度,在传统U-Net模型中引入高效通道注意力模块进行训练。结果表明改进的U-Net模型与传统模型相比,在测试集上采矿沉陷对应的交并比提升2.54百分点,为大范围采矿沉陷时空分布提取问题提供新的解决方法。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林佳惠
刘广
范景辉
赵红丽
白世彪
潘宏宇
关键词 U-Net模型D-InSAR采矿沉陷提取语义分割注意力模块    
Abstract

Surface subsidence caused by the exploitation of mineral resources must be considered during the development and utilization of land and space in mining areas. Furthermore, it serves as a significant indication of underground areas subjected to illicit mining. The exploitation of mineral resources is generally conducted in widespread, uneven, and dispersed areas, making it necessary to quickly and accurately identify and extract the spatial distribution of mining subsidence in large areas. This study determined the multitemporal differential interferometric phase diagram of mining areas using the differential interferometric synthetic aperture Radar (D-InSAR) technique. Furthermore, it trained networks for the intelligent identification of mining subsidence by employing deep-learning FCN-8s, PSPNet, Deeplabv3, and U-Net models. The results show that the U-Net model enjoys a high detection accuracy and a short detection time. To improve the semantic segmentation and extraction accuracy of information about mining subsidence, this study introduced the efficient channel attention (ECA) module into the conventional U-Net model during the training. Compared with the conventional model, the improved U-Net model increased the intersection over union (IOU) corresponding to mining subsidence by 2.54 percentage points.

Key wordsU-Net model    D-InSAR    extraction of mining subsidence    semantic segmentation    attention module
收稿日期: 2022-05-16      出版日期: 2023-09-19
ZTFLH:  TP79  
基金资助:国家重点研发计划项目“高亚洲和北极积雪-冰川与地质灾害监测技术及示范应用”(2021YFE0116800);中欧龙计划5期合作项目“Integration of multisource remote sensing data to detect and monitoring large and rapid landslides and use of artificial intelligence for cultural heritage preservation”(56796);可持续发展大数据国际研究中心创新研究计划(CBAS2022IRP02);国家自然科学基金项目“青藏高原露天煤矿排土场地形-土壤-植被响应机理及地貌重塑研究”(41977415)
通讯作者: 范景辉(1978-),男,博士,教授级高级工程师,主要从事InSAR技术应用研究以及3S技术在自然资源领域的应用。Email: jhfan2004@qq.com
作者简介: 林佳惠(1998-),女,硕士研究生,主要从事InSAR数据处理与应用。Email: linjiahui20@mails.ucas.ac.cn
引用本文:   
林佳惠, 刘广, 范景辉, 赵红丽, 白世彪, 潘宏宇. 联合改进U-Net模型和D-InSAR技术采矿沉陷提取方法[J]. 自然资源遥感, 2023, 35(3): 145-152.
LIN Jiahui, LIU Guang, FAN Jinghui, ZHAO Hongli, BAI Shibiao, PAN Hongyu. Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR. Remote Sensing for Natural Resources, 2023, 35(3): 145-152.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022197      或      https://www.gtzyyg.com/CN/Y2023/V35/I3/145
Fig.1  研究区地理位置示意图
Fig.2  技术流程图
Path113_Frame116 Path113_Frame121
20191116,20191128 20191011,20191104
20191116,20191210 20191104,20191128
20191128,20191210 20191116,20191128
20191128,20191222 20191128,20191210
20191210,20191222 20191210,20191222
Tab.1  实验所用的差分干涉像对
样本1 样本2 样本3
相位图
标记图
Tab.2  采矿沉陷相位图和样本标记图
Fig.3  ECA-UNet模型结构
模型 PA/% MIoU
/%
IoU
(背景)
/%
IoU
(采矿
沉陷)/%
训练
时间/h
FCN-32s 97.71 73.68 98.21 49.15 1.84
FCN-16s 98.16 76.61 98.38 54.84 1.88
FCN-8s 98.29 78.19 98.51 57.87 2.11
PSPNet 98.16 79.21 98.65 59.77 6.50
Deeplabv3 98.20 79.71 98.57 60.85 7.50
U-Net 98.31 79.24 98.27 60.20 5.08
本文模型 98.55 80.58 98.41 62.74 6.36
Tab.3  不同模型在测试集上的精度评价
场景 相位图 标记图 FCN-8s PSPNet Deeplabv3 U-Net 本文模型
场景1
场景2
场景3
Tab.4  不同模型的结果
Fig.4  采矿沉陷相位图及提取结果
Fig.5  被错分为采矿沉陷区的水体
[1] 胡振琪, 龙精华, 张瑞娅, 等. 中国东北多煤层老矿区采煤沉陷地损毁特征与复垦规划[J]. 农业工程学报, 2017, 33(5):238-247.
Hu Z Q, Long J H, Zhang R Y, et al. Damage characteristics and reclamation planning of coal mining subsidence land in old mining areas in northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(5):238-247.
[2] 刘辉, 朱晓峻, 程桦, 等. 高潜水位采煤沉陷区人居环境与生态重构关键技术:以安徽淮北绿金湖为例[J]. 煤炭学报, 2021, 46(12):4021-4032.
Liu H, Zhu X J, Cheng H, et al. Key technology of human environment and ecological reconstruction in high submersible level coal mining subsidence area:A case study from Lyujin Lake,Huaibei[J]. Journal of China Coal Society, 2021, 46(12):4021-4032.
[3] Ignacy D. Comprehensive method of assessing the flood threat of artificially drained mine subsidence areas for identification and sustainable repair of mining damage to the aquatic environment[J]. Water Resources and Industry, 2021, 26:100153.
doi: 10.1016/j.wri.2021.100153
[4] 李佳洺, 余建辉, 张文忠. 中国采煤沉陷区空间格局与治理模式[J]. 自然资源学报, 2019, 34(4):867-880.
doi: 10.31497/zrzyxb.20190415
Li J M, Yu J H, Zhang W Z. Spatial distribution and governance of coal-mine subsidence in China[J]. Journal of Natural Resources, 2019, 34(4):867-880.
doi: 10.31497/zrzyxb.20190415
[5] Donnelly L J, De La Cruz H, Asmar I. The monitoring and prediction of mining subsidence in the Amaga,Angelopolis,Venecia and Bolombolo Regions,Antioquia,Colombia[J]. Engineering Geology, 2001, 59(1-2):103-114.
doi: 10.1016/S0013-7952(00)00068-5
[6] Liu C, Zhou F, Gao J X, et al. Some problems of GPS RTK technique application to mining subsidence monitoring[J]. International Journal of Mining Science and Technology, 2012, 22(2):223-228.
doi: 10.1016/j.ijmst.2012.03.001
[7] Wang Z, Wang Z, Liu G, et al. Monitoring the coal mining subsidence in Jibei mine area using D-InSAR technique[C]// 2009 International Conference on Information Engineering and Computer Science.IEEE, 2009:1-4.
[8] 刘广, 郭华东, Ramon H, 等. InSAR技术在矿区沉降监测中的应用研究[J]. 国土资源遥感, 2008, 20(2):51-55.doi:10.6046/gtzyyg.2008.02.13.
doi: 10.6046/gtzyyg.2008.02.13
Liu G, Guo H D, Ramon H, et al. The application of InSAR technology to mining area subsidence monitoring[J]. Remote Sensing for Land and Resources, 2008, 20(2):51-55.doi:10.6046/gtzyyg.2008.02.13.
doi: 10.6046/gtzyyg.2008.02.13
[9] Guéguen Y, Deffontaines B, Fruneau B, et al. Monitoring residual mining subsidence of Nord/Pas-de-Calais coal basin from differential and persistent scatterer interferometry (Northern France)[J]. Journal of Applied Geophysics, 2009, 69(1):24-34.
doi: 10.1016/j.jappgeo.2009.02.008
[10] Carnec C, Massonnet D, King C. Two examples of the use of SAR interferometry on displacement fields of small spatial extent[J]. Geophysical Research Letters, 1996, 23(24):3579-3582.
doi: 10.1029/96GL03042
[11] Ge L, Chang H C, Rizos C. Mine subsidence monitoring using multi-source satellite SAR images[J]. Photogrammetric Engineering and Remote Sensing, 2007, 73(3):1742-1745.
[12] Wang Z, Zhang J, Liu G. Measuring land subsidence by PALSAR interferometry in Yanzhou coal mine area[C]// International Conference on Image Processing and Pattern Recognition in Industrial Engineering.SPIE, 2010, 7820:815-822.
[13] 白泽朝, 汪宝存, 靳国旺, 等. Sentinel-1A数据矿区地表形变监测适用性分析[J]. 国土资源遥感, 2019, 31(2):210-217.doi:10.6046/gtzyyg.2019.02.29.
doi: 10.6046/gtzyyg.2019.02.29
Bai Z C, Wang B C, Jin G W, et al. Applicability analysis of ground deformation monitoring in mining area by Sentinel-1A data[J]. Remote Sensing for Land and Resources, 2019, 31(2):210-217.doi: 10.6046/gtzyyg.2019.02.29.
doi: 10.6046/gtzyyg.2019.02.29
[14] 张腾, 谢帅, 黄波, 等. 利用Sentinel-1和ALOS-2数据探测茂县中部活动滑坡[J]. 国土资源遥感, 2021, 33(2):213-219.doi:10.6046/gtzyyg.2020206.
doi: 10.6046/gtzyyg.2020206
Zhang T, Xie S, Huang B, et al. Detection of active landslides in central Maoxian County using Sentinel-1 and ALOS-2 data[J]. Remote Sensing for Land and Resources, 2021, 33(2):213-219.doi:10.6046/gtzyyg.2020206.
doi: 10.6046/gtzyyg.2020206
[15] He Q, Zhang Y, Wu H, et al. Mining subsidence monitoring with modified time-series SAR interferometry method based on the multi-level processing strategy[J]. IEEE Access, 2021, 9:106039-106048.
doi: 10.1109/ACCESS.2021.3099633
[16] Xing X M, Zhu J J, Wang Y Z, et al. Time series ground subsidence inversion in mining area based on CRInSAR and PSInSAR integration[J]. Journal of Central South University, 2013, 20(9):2498-2509.
doi: 10.1007/s11771-013-1762-x
[17] Lesniak A, Porzycka S, Graniczny M. Subsidence analysis in mining area of Dabrowskie coal basin using PSInSAR technique[C]// 13th European Meeting of Environmental and Engineering Geophysics.European Association of Geoscientists and Engineers, 2007.
[18] Han S, Zhao B, Bai Y, et al. Mining subsidence research based on SBAS-InSAR in Yaojie coal mine[J]. Mine Surveying, 2019, 47:1-5.
[19] 李梦梦, 范雪婷, 陈超, 等. 徐州矿区2016—2018年地面沉降监测与分析[J]. 自然资源遥感, 2021, 33(4):43-54.doi:10.6046/zrzyyg.2020137.
doi: 10.6046/zrzyyg.2020137
Li M M, Fan X T, Chen C, et al. Monitoring and interpretation of land subsidence in mining areas in Xuzhou City during 2016—2018[J]. Remote Sensing for Natural Resources, 2021, 33(4):43-54.doi:10.6046/zrzyyg.2020137.
doi: 10.6046/zrzyyg.2020137
[20] 史珉, 宫辉力, 陈蓓蓓, 等. Sentinel-1A京津冀平原区2016—2018年地面沉降InSAR监测[J]. 自然资源遥感, 2021, 33(4):55-63.doi:10.6046/zrzyyg.2020341.
doi: 10.6046/zrzyyg.2020341
Shi M, Gong H L, Chen B B, et al. Monitoring of land subsidence in Beijing - Tianjin - Hebei plain during 2016—2018 based on InSAR and Sentinel-1A data[J]. Remote Sensing for Natural Resources, 2021, 33(4):55-63.doi:10.6046/zrzyyg.2020341.
doi: 10.6046/zrzyyg.2020341
[21] 刘金龙, 郭华东, 宋瑞, 等. 多模式雷达在矿区沉降监测中的应用研究[J]. 遥感技术与应用, 2012, 27(4):584-590.
Liu J L, Guo H D, Song R, et al. The application of multi-mode Radar to mining area subsidence monitoring[J]. Remote Sensing Technology and Application, 2012, 27(4):584-590.
[22] Bała J, Porzycka-Strzelczyk S, Strzelczyk J. Subsidence troughs detection for SAR images:Preliminary results[J]. 15th International Multidisciplinary Scientific GeoConferences(SGEM), 2015:18-24.
[23] Klimczak M, Bała J. Application of the Hough transform for subsidence troughs detection in SAR images[J]. 17th International Multidisciplinary Scientific GeoConference(SGEM), 2017:819-826.
[24] Bała J, Dwornik M, Franczyk A J S. Automatic subsidence troughs detection in SAR interferograms using circlet transform[J]. Sensors, 2021, 21(5):1706.
doi: 10.3390/s21051706
[25] Porzycka-Strzelczyk S, Rotter P, Strzelczyk J. Automatic detection of subsidence troughs in SAR interferograms based on circular Gabor filters[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(6):873-876.
doi: 10.1109/LGRS.2018.2815782
[26] 张堯. 基于InSAR技术大同煤田沉陷区的监测与识别[D]. 北京: 中国地质大学(北京), 2020.
Zhang Y. Monitoring and identification of subsidence area in Datong coalfield based on InSAR technology[D]. Beijing: China University of Geoscience (Beijing), 2020.
[27] Wu Z, Zhang H, Wang Y, et al. A deep learning based method for local subsidence detection and InSAR phase unwrapping:Application to mining deformation monitoring[C]// 2020 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2020:20-23.
[28] Anantrasirichai N, Biggs J, Kelevitz K, et al. Detecting ground deformation in the built environment using sparse satellite InSAR data with a convolutional neural network[J]. IEEE Transactions on Geo-science and Remote Sensing, 2020, 59(4):2940-2950.
doi: 10.1109/TGRS.2020.3018315
[29] Valade S, Ley A, Massimetti F, et al. Towards global volcano monitoring using multisensor sentinel missions and artificial intelligence:The MOUNTS monitoring system[J]. Remote Sensing, 2019, 11(13):1528.
doi: 10.3390/rs11131528
[30] Anantrasirichai N, Biggs J, Albino F, et al. A deep learning approach to detecting volcano deformation from satellite imagery using synthetic datasets[J]. Remote Sensing of Environment, 2019, 230:111179.
doi: 10.1016/j.rse.2019.04.032
[31] Anantrasirichai N, Biggs J, Albino F, et al. Application of machine learning to classification of volcanic deformation in routinely generated InSAR data[J]. Journal of Geophysical Research:Solid Earth, 2018, 123(8):6592-6606.
doi: 10.1029/2018JB015911
[32] Wu Z, Zhang H, Wang Y, et al. A deep learning based method for local subsidence detection and InSAR phase unwrapping:Application to mining deformation monitoring[C]// 2020 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2020:20-23.
[33] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015:3431-3440.
[34] Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:2881-2890.
[35] Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation[J/OL]. arXiv, 2017(2017-12-5). http://arxio.org/pdf/1706.05587.pdf.
[36] Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention.Springer,Cham, 2015:234-241.
[37] Wang Q, Wu B, Zhu P, et al. ECA-Net:Efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).IEEE, 2020:11531-11539.
[38] Xu Z, Wu C, Zheng E, et al. Semantic segmentation of buildings in remote sensing images based on dense residual learning and channel adaption[C]// 2019 4th International Conference on Electromechanical Control Technology and Transportation (ICECTT).IEEE, 2019:117-123.
[39] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Proceedings of the European Conference on Computer Vision (ECCV), 2018:801-818.
[40] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition.[C]// 3rd International Conference on Learning Representations (ICLR), 2015:1-14.
[41] He K, Zhang X, Ren S, et al. Deep residual learning for image reco-gnition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778.
[1] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[2] 赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
[3] 苏玮, 林阳阳, 岳文, 陈颖彪. 基于U-Net卷积神经网络的广东省海水养殖区识别及其时空变化遥感监测[J]. 自然资源遥感, 2022, 34(4): 33-41.
[4] 孟琮棠, 赵银娣, 韩文泉, 何晨阳, 陈锡秋. 基于RandLA-Net的机载激光雷达点云城市建筑物变化检测[J]. 自然资源遥感, 2022, 34(4): 113-121.
[5] 沈骏翱, 马梦婷, 宋致远, 柳汀洲, 张微. 基于深度学习语义分割模型的高分辨率遥感图像水体提取[J]. 自然资源遥感, 2022, 34(4): 129-135.
[6] 王华俊, 葛小三. 一种轻量级的DeepLabv3+遥感影像建筑物提取方法[J]. 自然资源遥感, 2022, 34(2): 128-135.
[7] 廖廓, 聂磊, 杨泽宇, 张红艳, 王艳杰, 彭继达, 党皓飞, 冷伟. 基于多维卷积神经网络的多源高分辨率卫星影像茶园分类[J]. 自然资源遥感, 2022, 34(2): 152-161.
[8] 郭文, 张荞. 基于注意力增强全卷积神经网络的高分卫星影像建筑物提取[J]. 国土资源遥感, 2021, 33(2): 100-107.
[9] 刘钊, 赵桐, 廖斐凡, 李帅, 李海洋. 基于语义分割网络的高分遥感影像城市建成区提取方法研究与对比分析[J]. 国土资源遥感, 2021, 33(1): 45-53.
[10] 蔡祥, 李琦, 罗言, 齐建东. 面向对象结合深度学习方法的矿区地物提取[J]. 国土资源遥感, 2021, 33(1): 63-71.
[11] 仇一帆, 柴登峰. 无人工标注数据的Landsat影像云检测深度学习方法[J]. 国土资源遥感, 2021, 33(1): 102-107.
[12] 刘钊, 廖斐凡, 赵桐. 基于PSPNet的遥感影像城市建成区提取及其优化方法[J]. 国土资源遥感, 2020, 32(4): 84-89.
[13] 刘尚旺, 崔智勇, 李道义. 基于Unet网络多任务学习的遥感图像建筑地物语义分割[J]. 国土资源遥感, 2020, 32(4): 74-83.
[14] 李宇, 肖春姣, 张洪群, 李湘眷, 陈俊. 深度卷积融合条件随机场的遥感图像语义分割[J]. 国土资源遥感, 2020, 32(3): 15-22.
[15] 刘文雅, 岳安志, 季珏, 师卫华, 邓孺孺, 梁业恒, 熊龙海. 基于DeepLabv3+语义分割模型的GF-2影像城市绿地提取[J]. 国土资源遥感, 2020, 32(2): 120-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发