Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (4): 129-135    DOI: 10.6046/zrzyyg.2021357
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于深度学习语义分割模型的高分辨率遥感图像水体提取
沈骏翱1(), 马梦婷2, 宋致远1, 柳汀洲1, 张微1,2()
1.浙江大学软件学院,宁波 315048
2.浙江大学计算机科学与技术学院,杭州 310027
Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model
SHEN Jun’ao1(), MA Mengting2, SONG Zhiyuan1, LIU Tingzhou1, ZHANG Wei1,2()
1. School of Software Technology, Zhejiang University, Ningbo 315048, China
2. School of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
全文: PDF(5353 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

水体提取是高空间分辨率遥感影像应用中重要研究方向之一。传统识别方法仅利用水体的浅层特征,为了更好地挖掘遥感影像的深度信息,从而提升水体提取算法的鲁棒性,提高分割精度,提出了一种基于深度学习语义分割模型的水体提取方法。利用深度神经网络挖掘高分辨率遥感影像信息,同时引入注意力模块,整合深层信息与浅层地物的形状、结构、纹理和色调等信息,拟建立比现有模型具有更高准确率、更快预测速度的全新深度语义分割模型。最后,和传统识别方法以及常见语义分割模型进行对比消融实验。实验证明所提出算法模型的总体精度和效率均优于现有方法,且算法参数设置简单,受人工干预少。文章证明了深度学习以及注意力机制在高分辨率遥感影像水体提取任务上的准确性和高效性,提供了一种使用深度学习方法解决高分辨率遥感影像分割任务的可能,并对未来进行了展望。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
沈骏翱
马梦婷
宋致远
柳汀洲
张微
关键词 语义分割多尺度遥感影像全卷积网络注意力机制    
Abstract

Water information extraction is an important study direction in the application of high spatial resolution remote sensing images. Conventional recognition methods only focus on the shallow features of water. Therefore, to further improve the robustness of water information extraction algorithms and increase the segmentation precision by extracting more deep information from remote sensing images, this study proposed a water classification method using the semantic segmentation model based on deep learning. First, deep neural networks were used to mine the information from high-resolution remote sensing images. Then, attention modules were used to integrate the deep information with the shallow features such as shape, structure, texture, and hue. Based on the integrated information, a new deep semantic segmentation model with higher precision and prediction efficiency than existent models was built. Finally, the ablation experiment was conducted to compare with conventional recognition methods and common semantic segmentation models. The experiment demonstrates that the proposed algorithm model yields higher overall precision and efficiency than previous methods and that the algorithm parameters are easy to set and less human intervention is required in the model. This study proved the accuracy and efficiency of deep learning and attention mechanism on water information extraction from high-resolution remote sensing images. Moreover, this study provided a possible solution for the segmentation of high-resolution remote sensing images using the deep learning method and explored the future prospect of the solution.

Key wordssemantic segmentation    multi-scale    remote sensing image    full convolutional network    attention mechanism
收稿日期: 2021-10-25      出版日期: 2022-12-27
ZTFLH:  TP75  
基金资助:浙江省重点研发计划项目“基于大数据的时空信息平台系统建设”(2021C01031);宁波市自然科学基金项目“基于时空大数据和AIoT技术的污泥专运溯源管理系统研发与应用”(2022S125)
通讯作者: 张 微(1980-),男,博士,教授,博士生导师,研究方向为时空大数据。Email: cstzhangwei@zju.edu.cn
作者简介: 沈骏翱(1997-),男,硕士研究生,研究方向为遥感影像深度学习分析。Email: 22051094@zju.edu.cn
引用本文:   
沈骏翱, 马梦婷, 宋致远, 柳汀洲, 张微. 基于深度学习语义分割模型的高分辨率遥感图像水体提取[J]. 自然资源遥感, 2022, 34(4): 129-135.
SHEN Jun’ao, MA Mengting, SONG Zhiyuan, LIU Tingzhou, ZHANG Wei. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model. Remote Sensing for Natural Resources, 2022, 34(4): 129-135.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021357      或      https://www.gtzyyg.com/CN/Y2022/V34/I4/129
Fig.1  最终遥感影像标注图局部
Fig.2  S&CMNet概览图
Fig.3  S&CMNet V2网络模型
模型名称 PA/% mIoU/% F1-
Score/%
TIME/
(s·100-1)
NDWI 67.52 41.48 51.30
U-Net 90.43 88.33 93.50 252.25
SegNet 93.04 87.85 93.22 419.03
S&CMNet V2 92.66 89.82 94.43 291.31
PSPNet 88.64 86.07 92.16 223.62
DeeplabV3+ 92.83 88.09 93.38 239.88
S&CMNet V1 91.37 85.09 91.51 190.66
Tab.1  S&CMNet模型语义精度
Tab.2  NDWI分割方法与U-Net语义分割方法的分割结果
数据序号 原始图像 真值 U-Net SegNet PSPNet DeeplabV3+
1
2
3
Tab.3  基于ResNet101的语义分割网络的分割结果与先前实验结果之间对比
Tab.4  S&CMNet网络模型的分割结果
[1] 方涛, 霍宏, 马贺平. 高分辨率遥感影像智能解译[M]. 北京: 科学出版社, 2016:18-25.
Fang T, Huo H, Ma H P. Intelligent interpretation of high resolution remote sensing image[M]. Beijing: Science Press, 2016:18-25.
[2] Deng F L. Research on multi-level segmentation method and application of high resolution remote sensing image[D]. Beijing: University of Chinese Academy of Sciences, 2013.
[3] Work E A, Gilmer D S. Utilization of satellite data for inventorying prairie ponds and lakes[J]. Photogrammetric Engineering and Remote Sensing, 1976, 42(5):685-694.
[4] Frazier P S, Page K J. Water body detection and delineation with Landsat TM data[J]. Photogrammetric Engineering and Remote Sensing, 2000, 66(12):1461-1468.
[5] McFeeters S K. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7):1425-1432.
doi: 10.1080/01431169608948714
[6] Kaufman Y J, Tanre D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2):261-270.
doi: 10.1109/36.134076
[7] Xu H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5):589-595.
[8] Lecun Y L, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
doi: 10.1109/5.726791
[9] Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25(2):1097-1105.
[10] He K, Gkioxari G, Dollár P, et al. Mask R-CNN[C]// Proceedings of the IEEE International Conference on Computer Vision, 2017:2961-2969.
[11] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015:3431-3440.
[12] 许玥. 基于改进Unet的遥感影像语义分割在地表水体变迁中的应用[D]. 重庆: 重庆师范大学, 2019.
Xu Y. Application of semantic segmentation of remote sensing image based on improved Unet in surface water changes[D]. Chongqing: Chongqing Normal University, 2019.
[13] Ying X, Wang Q, Li X, et al. Multi-attention object detection model in remote sensing images based on multi-scale[J]. IEEE Access, 2019, 7:94508-94519.
doi: 10.1109/ACCESS.2019.2928522
[14] He N, Fang L, Plaza A. Hybrid first and second order attention U-net for building segmentation in remote sensing images[J]. Science China Information Sciences, 2020, 63(4):1-12.
[15] Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297.
[16] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
doi: 10.1126/science.1127647 pmid: 16873662
[17] Zhang X, Xiao P, Feng X, et al. Toward evaluating multiscale segmentations of high spatial resolution remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7):3694-3706.
doi: 10.1109/TGRS.2014.2381632
[18] Chen L C, Papandreou G, Kokkinos I, et al. Deeplab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4):834-848.
doi: 10.1109/TPAMI.2017.2699184
[19] Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:2881-2890.
[20] Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2015:234-241.
[1] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[2] 牛祥华, 黄微, 黄睿, 蒋斯立. 基于注意力特征融合的高保真遥感图像薄云去除[J]. 自然资源遥感, 2023, 35(3): 116-123.
[3] 林佳惠, 刘广, 范景辉, 赵红丽, 白世彪, 潘宏宇. 联合改进U-Net模型和D-InSAR技术采矿沉陷提取方法[J]. 自然资源遥感, 2023, 35(3): 145-152.
[4] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
[5] 郑宗生, 刘海霞, 王振华, 卢鹏, 沈绪坤, 唐鹏飞. 改进3D-CNN的高光谱图像地物分类方法[J]. 自然资源遥感, 2023, 35(2): 105-111.
[6] 赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
[7] 苏腾飞. 基于边界信息的多尺度遥感影像分割质量非监督评价方法[J]. 自然资源遥感, 2023, 35(1): 35-40.
[8] 金远航, 徐茂林, 郑佳媛. 基于改进YOLOv4-tiny的无人机影像枯死树木检测算法[J]. 自然资源遥感, 2023, 35(1): 90-98.
[9] 孟琮棠, 赵银娣, 韩文泉, 何晨阳, 陈锡秋. 基于RandLA-Net的机载激光雷达点云城市建筑物变化检测[J]. 自然资源遥感, 2022, 34(4): 113-121.
[10] 吕雅楠, 朱红, 孟健, 崔成玲, 宋其淇. 面向高分辨率遥感影像车辆检测的深度学习模型综述及适应性研究[J]. 自然资源遥感, 2022, 34(4): 22-32.
[11] 张鹏强, 高奎亮, 刘冰, 谭熊. 联合空谱信息的高光谱影像深度Transformer网络分类[J]. 自然资源遥感, 2022, 34(3): 27-32.
[12] 程滔. 一种与遥感影像同步纠正的矢量地理信息采集方法[J]. 自然资源遥感, 2022, 34(3): 59-64.
[13] 王艺儒, 王光辉, 杨化超, 刘慧杰. 基于生成对抗网络的遥感影像色彩一致性方法[J]. 自然资源遥感, 2022, 34(3): 65-72.
[14] 唐文魁, 俞露, 周伟奇, 岳隽, 周正. 基于长时间序列遥感数据的深圳景观连通性动态变化研究[J]. 自然资源遥感, 2022, 34(3): 97-105.
[15] 孔爱玲, 张承明, 李峰, 韩颖娟, 孙焕英, 杜漫飞. 基于知识引导的遥感影像融合方法[J]. 自然资源遥感, 2022, 34(2): 47-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发