Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (3): 64-70    DOI: 10.6046/zrzyyg.2022159
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
NSCT和PCNN相结合的遥感图像全色锐化算法
徐欣钰1(), 李小军1,2,3(), 赵鹤婷1, 盖钧飞1
1.兰州交通大学测绘与地理信息学院,兰州 730070
2.地理国情监测技术应用国家地方联合工程研究中心,兰州 730070
3.甘肃省地理国情监测工程实验室,兰州 730070
Pansharpening algorithm of remote sensing images based on NSCT and PCNN
XU Xinyu1(), LI Xiaojun1,2,3(), ZHAO Heting1, GAI Junfei1
1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
2. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China
3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
全文: PDF(3482 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

针对传统的全色锐化融合中细节信息提取不准确、融合光谱精度不高等问题,结合非下采样轮廓波变换(nonsubsampled Contourlet transform, NSCT)的多尺度多方向分解特点和脉冲耦合神经网络(pulse coupled neural networks, PCNN)脉冲同步发放特性等优点,提出了一种基于NSCT和PCNN的遥感图像全色锐化算法。该算法首先采用NSCT变换提取全色图像细节特征,然后将该特征注入PCNN模型获得的非规则分割区域,最终采用统计加权方式获取高分辨率的多光谱遥感图像锐化融合结果。采用WorldView-2和GF-2高空间分辨率遥感图像数据集实验结果表明,该算法在细节保持和光谱一致性等评价指标上均优于其他遥感图像融合算法,验证了该算法有效性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐欣钰
李小军
赵鹤婷
盖钧飞
关键词 脉冲耦合神经网络非下采样轮廓波变换遥感图像融合多光谱遥感图像    
Abstract

Conventional pansharpening fusion methods suffer inaccurate extraction of details and low spectrum fusion accuracy. This study proposed a pansharpening algorithm of remote sensing images based on nonsubsampled Contourlet transform (NSCT) and pulse coupled neural networks (PCNN) by combining the multi-scale and -directional decomposition characteristics of NSCT and the pulse synchronous emission characteristics of PCNN. The process of this pansharpening algorithm is as follows: first, the details of panchromatic images were extracted through NSCT; then, the extracted detail features were injected into the irregular segmentation regions obtained using the PCNN model; finally, the sharpening fusion results of high-resolution multispectral remote-sensing images were obtained through statistical weighting. As corroborated by the experimental results of WorldView-2 and GF-2 data sets, the pansharpening algorithm outperforms other remote sensing image fusion algorithms in detail preservation and spectral consistency, verifying its effectiveness.

Key wordspulse coupled neural network    nonsubsampled Contourlet transform    remote sensing image fusion    multispectral remote sensing image
收稿日期: 2022-04-22      出版日期: 2023-09-19
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“基于脉冲耦合神经网络的高光谱遥感图像融合方法研究”(41861055);中国博士后基金项目(2019M653795);兰州交通大学优秀平台共同资助(201806)
通讯作者: 李小军(1982-),男,副教授,主要从事遥感数字图像处理、神经网络等方面研究。Email: xjlilzu@hotmail.com
作者简介: 徐欣钰(1999-),女,硕士研究生,主要从事遥感图像融合方面研究。Email: 1741529970@qq.com
引用本文:   
徐欣钰, 李小军, 赵鹤婷, 盖钧飞. NSCT和PCNN相结合的遥感图像全色锐化算法[J]. 自然资源遥感, 2023, 35(3): 64-70.
XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022159      或      https://www.gtzyyg.com/CN/Y2023/V35/I3/64
Fig.1  NSCT分解示意图
Fig.2  PCNN单个神经元模型
Fig.3  本文算法锐化融合流程
Fig.4  WorldView-2数据集的全色锐化结果
Fig.5  GF-2数据集的全色锐化结果
方法 全分辨率评价指标 降分辨率评价指标
D λ DS QNR Q4 Q_avg ERGAS
本文算法 0.012 0 0.067 5 0.921 3 0.691 9 0.680 0 9.587 3
PCA 0.026 7 0.384 6 0.599 0 0.632 6 0.628 3 10.461 9
IHS 0.022 7 0.378 6 0.607 3 0.630 5 0.627 2 10.628 4
GS 0.030 1 0.377 6 0.603 7 0.633 8 0.629 7 10.469 0
GSA 0.054 4 0.392 2 0.574 7 0.653 3 0.641 4 10.695 7
HPF 0.039 4 0.122 5 0.842 9 0.665 9 0.651 2 9.926 1
SFIM 0.029 7 0.099 7 0.873 6 0.670 7 0.656 4 9.856 9
ATWT 0.044 2 0.161 1 0.801 9 0.690 3 0.677 4 9.753 9
Tab.1  WorldView-2客观评价结果
方法 全分辨率评价指标 降分辨率评价指标
D λ DS QNR Q4 Q_avg ERGAS
本文算法 0.029 7 0.138 6 0.835 9 0.789 3 0.788 9 1.926 6
PCA 0.052 4 0.522 9 0.452 0 0.642 3 0.650 0 2.359 2
IHS 0.054 6 0.525 4 0.448 7 0.636 5 0.644 8 2.371 3
GS 0.052 0 0.522 7 0.452 5 0.642 7 0.650 5 2.356 8
GSA 0.083 3 0.517 9 0.442 0 0.619 7 0.633 5 2.997 4
HPF 0.036 1 0.142 4 0.826 6 0.759 4 0.761 3 1.980 6
SFIM 0.036 3 0.142 7 0.826 2 0.758 4 0.759 5 1.993 1
ATWT 0.040 9 0.197 7 0.769 4 0.774 4 0.776 4 1.966 1
Tab.2  GF-2客观评价结果
[1] 杨丽萍, 马孟, 谢巍, 等. 干旱区Landsat8全色与多光谱数据融合算法评价[J]. 国土资源遥感, 2019, 31(4):11-19.doi:10.6046/gtzyyg.2019.04.02.
doi: 10.6046/gtzyyg.2019.04.02
Yang L P, Ma M, Xie W, et al. Fusion algorithm evaluation of Landsat8 panchromatic and multispetral images in arid regions[J]. Remote Sensing for Land and Resources, 2019, 31(4):11-19.doi:10.6046/gtzyyg.2019.04.02.
doi: 10.6046/gtzyyg.2019.04.02
[2] Vivone G, Mura M D, Garzelli A, et al. A new benchmark based on recent advances in multispectral pansharpening:Revisiting pansharpening with classical and emerging pansharpening methods[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 9(1):53-56.
doi: 10.1109/MGRS.6245518
[3] 刘万军, 高健康, 曲海成, 等. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3):97-106.doi:10.6046/zrzyyg.2020372.
doi: 10.6046/zrzyyg.2020372
Liu W J, Gao J K, Qu H C, et al. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3):97-106.doi:10.6046/zrzyyg.2020372.
doi: 10.6046/zrzyyg.2020372
[4] Li H F, Song D Z, Liu Y, et al. Automatic pavement crack detection by multi-scale image fusion[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(6):2025-2031.
doi: 10.1109/TITS.6979
[5] 宋亚萍. 基于多源影像融合和面向对象的土地利用分类技术研究[D]. 石河子: 石河子大学, 2020.
Song Y P. Research on land use classification technology based on multi-source image fusion and object-oriented[D]. Shihezi: Shihezi University, 2020.
[6] Kahraman S, Erturk A. Review and performance comparison of pansharpening algorithms for RASAT images[J]. Istanbul University-Journal of Electrical and Electronics Engineering, 2018, 18(1):109-120.
doi: 10.5152/iujeee.
[7] Wady S, Bentoutou Y, Bengermikh A, et al. A new IHS and wavelet based pansharpening algorithm for high spatial resolution satellite imagery[J]. Advances in Space Research, 2020, 66(7):1507-1518.
doi: 10.1016/j.asr.2020.06.001
[8] Du C, Gao S. Remote sensing image fusion based on nonlinear IHS and fast nonsubsampled contourlet transform[J]. Journal of the Indian Society of Remote Sensing, 2018, 46(6):2023-2032.
doi: 10.1007/s12524-018-0859-y
[9] Wu Z, Huang Y, Zhang K. Remote sensing image fusion method based on PCA and Curvelet transform[J]. Journal of the Indian Society of Remote Sensing, 2018, 46(5):687-689.
doi: 10.1007/s12524-017-0736-0
[10] 张涛, 刘军, 杨可明, 等. 结合Gram-Schmidt变换的高光谱影像谐波分析融合算法[J]. 测绘学报, 2015, 44(9):1042-1047.
doi: 10.11947/j.AGCS.2015.20140637
Zhang T, Liu J, Yang K M, et al. Harmonic analysis fusion algorithm for hyperspectral image combining Gram-Schmidt transform[J]. Journal of Surveying and Mapping, 2015, 44(9):1042-1047.
[11] Aiazzi B, Baronti S, Selva M. Improving component substitution pansharpening through multivariate regression of MS+Pan data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10):3230-3239.
doi: 10.1109/TGRS.2007.901007
[12] Nunez J, Otazu X, Fors O, et al. Multiresolution-based image fusion with additive wavelet decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3):1204-1211.
doi: 10.1109/36.763274
[13] Ma D, Lai H C. Remote sensing image matching based improved ORB in NSCT domain[J]. Journal of the Indian Society of Remote Sensing, 2019, 47(5):801-807.
doi: 10.1007/s12524-019-00958-y
[14] 王密, 何鲁晓, 程宇峰, 等. 自适应高斯滤波与SFIM模型相结合的全色多光谱影像融合方法[J]. 测绘学报, 2018, 47(1):82-90.
doi: 10.11947/j.AGCS.2018.20170421
Wang M, He L X, Cheng Y F, et al. Panchromatic multispectral image fusion method based on adaptive Gaussian filter and SFIM model[J]. Journal of Surveying and Mapping, 2018, 47(1):82-90.
[15] Cunha A L, Zhou J, Do M N, et al. The nonsubsampled Contourlet transform:Theory,design,and applications[J]. IEEE Transactions on Image Processing, 2006, 15(10):3089-3101.
doi: 10.1109/TIP.2006.877507
[16] Eckhorn R, Frien A, Bauer R, et al. High frequency (60-90 Hz) oscillations in primary visual cortex of awake monkey[J]. Neuroreport, 1993, 4(3):243-246.
pmid: 8477045
[17] 李凯. 基于PCNN和图像分块融合法的多聚焦图像融合算法研究[D]. 昆明: 云南大学, 2013.
Li K. Research on multi-focus image fusion algorithm based on PCNN and image block fusion method[D]. Kunming: Yunnan University, 2013.
[18] Ding S, Zhao X, Hui X, et al. NSCT-PCNN image fusion based on image gradient motivation[J]. IET Computer Vision, 2018, 12(4):377-383.
doi: 10.1049/cvi2.v12.4
[19] 马冯. 基于NSCT变换的遥感图像融合算法研究[D]. 西安: 长安大学, 2019.
Ma F. Research on remote sensing image fusion algorithm based on NSCT transform[D]. Xi’an: Chang’an University, 2019.
[20] 闫利, 向天烛. NSCT域内结合边缘特征和自适应PCNN的红外与可见光图像融合[J]. 电子学报, 2016, 44(4):761-766.
doi: 10.3969/j.issn.0372-2112.2016.04.002
Yan L, Xiang T Z. Infrared and visible image fusion based on edge feature and adaptive PCNN in NSCT domain[J]. Journal of Electronics, 2016, 44(4):761-766.
[1] 付昱凯, 杨树文, 闫恒, 薛庆, 洪卫丽, 苏航. 耦合非局部自相似性与散度的SAR与光学影像融合[J]. 自然资源遥感, 2023, 35(1): 99-106.
[2] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发