Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (2): 1-9    DOI: 10.6046/zrzyyg.2023059
  综述 本期目录 | 过刊浏览 | 高级检索 |
基于植被光学厚度的全球植被动态监测进展
杨妮1,2(), 邓树林3(), 樊艳红2, 谢国雪4
1.中国地质大学(武汉)地理与信息工程学院,武汉 430074
2.广西财经学院管理科学与工程学院,南宁 530003
3.南宁师范大学地理科学与规划学院,南宁 530001
4.广西农业科学院农业科技信息研究所,南宁 530003
Advances in research on the dynamic monitoring of global vegetation based on the vegetation optical depth
YANG Ni1,2(), DENG Shulin3(), FAN Yanhong2, XIE Guoxue4
1. School of Geography and Information Engineering, China University of Geosciences(Wuhan), Wuhan 430074, China
2. School of Management Science and Engineering, Guangxi University of Finance and Economics, Nanning 530003, China
3. School of Geography Science and Planning, Nanning Normal University, Nanning 530001, China
4. Institute of Agricultural Science and Technology Information, Guangxi Academy of Agricultural Sciences, Nanning 530003, China
全文: PDF(1206 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

植被光学厚度(vegetation optical depth,VOD)为一种基于微波的植被含水量和生物量估算方法。与光学遥感相比,卫星VOD对大气扰动的敏感性较低,可测量植被不同方面的特征和信息,为全球植被监测提供了一个独立和互补的数据源,已经被广泛用于研究全球气候和环境变化对植被的影响。了解目前VOD在全球植被动态监测的应用研究进展,对其进一步发展和深入应用非常重要。鉴于此,文章首先重点介绍了被动微波和主动微波反演VOD的主要方法,对比分析不同传感器VOD产品的主要特点; 然后,从植被特征监测(如植被含水量、生物量)、碳平衡分析、干旱监测、物候分析等方面总结当前VOD在植被动态监测应用方面的研究进展; 最后,探讨了VOD产品的优缺点和改进方法,进一步展望了VOD技术在植被动态监测中的应用前景。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨妮
邓树林
樊艳红
谢国雪
关键词 植被光学厚度植被含水量生物量植被物候分析碳平衡分析    
Abstract

The vegetation optical depth (VOD) serves as a microwave-based method for estimating vegetation water content and biomass. Compared to optical remote sensing, the satellite-based VOD, exhibiting a lower sensitivity to atmospheric disturbances, can measure the characteristics and information of vegetation in various aspects, thus providing an independent and complementary data source for global vegetation monitoring. It has been extensively applied to investigate the effects of global climate and environmental changes on vegetation. Discerning the research advances of VOD application in the dynamic monitoring of global vegetation is critical for VOD’s further development and application. Hence, this study first presented the primary methods for obtaining the VOD through inversion of passive and active microwave data, comparatively analyzing the principal characteristics of various sensor VOD products. Then, this study generalized the current research advances of VOD in the dynamic monitoring of vegetation in terms of vegetation characteristic monitoring (like vegetation water content and biomass), carbon balance analysis, drought monitoring, and phenological analysis. Finally, this study expounded the advantages, limitations, and improvement approaches of VOD products, envisioning the application prospect of VOD in the dynamic monitoring of vegetation.

Key wordsvegetation optical depth    vegetation water content    biomass    vegetation phenological analysis    carbon balance analysis
收稿日期: 2023-03-08      出版日期: 2024-06-14
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“基于叶绿素荧光等多源卫星遥感的甘蔗旱灾机理与监测方法研究”(桂科42061071);广西科技基地和人才专项“西南农业干旱时空变化的检测与归因研究”(AD20297027);广西自然科学基金项目“我国东部季风区雨季变化的检测与归因研究”(2021GXNSFBA220061);广西哲学社会科学规划研究课题“共同富裕目标下石漠化连片特困区多维相对贫困测度与治理研究”(22FTJ003);广西高校中青年教师科研基础能力提升项目“气候变化背景下西南农业干旱的变化与机理研究”(2021KY0397);统计学广西一流学科建设项目(桂教科研〔2022〕1号)
通讯作者: 邓树林(1989-),男,博士,副教授,主要从事资源环境遥感研究。Email: dengshulin12531@163.com
作者简介: 杨 妮(1989-),女,博士研究生,副教授,主要从事GIS与遥感应用、空间信息技术应用与服务研究。Email: yangniyyy@163.com
引用本文:   
杨妮, 邓树林, 樊艳红, 谢国雪. 基于植被光学厚度的全球植被动态监测进展[J]. 自然资源遥感, 2024, 36(2): 1-9.
YANG Ni, DENG Shulin, FAN Yanhong, XIE Guoxue. Advances in research on the dynamic monitoring of global vegetation based on the vegetation optical depth. Remote Sensing for Natural Resources, 2024, 36(2): 1-9.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023059      或      https://www.gtzyyg.com/CN/Y2024/V36/I2/1
产品 传感器 频段/GHz 空间分辨率 时间分辨率 有效期间 参考文献
LPDR Version 2 AMSR-E 10.65 25 km 逐日 2002/01—2011/12 [32]
AMSR2 10.65 25 km 逐日 2012/05—今
LPRM Version 5 SSMR 6.63,10.69 25 km 逐日 1978/10—1995/02 [12]
SSM/I 19.35 25 km 逐日 1987/06—今
TMI 10.65,19.35 45 km 逐日 1997/12—2015/04
AMSR-E 6.925,10.65,18.7 38, 56 km 逐日 2002/06—2011/10
WindSat 6.8,10.7,18.7 25 km 逐日 2003/01—2012/07
AMSR2 6.925,7.30,10.56,18.7 31, 46 km 逐日 2012/05—今
VODCA LPRM
Version 6
SSM/I 19.35 0.25° 逐日 1987/06—今 [3]
TMI 10.65,19.35 0.25° 逐日 1997/12—2015/04
AMSR-E 6.925,7.30,10.65,18.7 0.25° 逐日 2002/06—2011/10
WindSat 6.8,10.7,18.7 0.25° 逐日 2003/01—今
AMSR2 6.925,7.30,10.65,18.7 0.25° 逐日 2012/05—2019/12
SMOS L2 SMOS 1.4 25 km 逐日 2010/01—今 [33]
SMOS L3 SMOS 1.4 25 km 逐日 2010/01—今 [35]
SMOS-IC SMOS 1.4 25 km 逐日 2010/01—今 [8]
L2_SM_P SMAP 1.413 36 km 逐日 2015/02—今 [36]
L2_SM_P_E SMAP 1.413 9 km 逐日 2015/02—今 [37]
MT-DCA SMAP 1.413 9 km 逐日 2015/02—今 [30]
ASCAT TUW ASCAT 5.255 25 km 逐日 2006/10—今 [27]
Tab.1  全球主要的VOD产品介绍
[1] Frappart F, Wigneron J P, Li X J, et al. Global monitoring of the vegetation dynamics from the vegetation optical depth (VOD):A review[J]. Remote Sensing, 2020, 12(18):2915.
[2] 赵伟, 文凤平, 蔡俊飞. 被动微波土壤水分遥感产品空间降尺度研究: 方法、进展及挑战[J]. 遥感学报, 2022, 26(9):1699-1722.
Zhao W, Wen F P, Cai J F. Methods,progresses,and challenges of passive microwave soil moisture spatial downscaling[J]. National Remote Sensing Bulletin, 2022, 26(9):1699-1722.
[3] Moesinger L, Dorigo W, de Jeu R, et al. The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA)[J]. Earth System Science Data, 2020, 12(1):177-196.
[4] Jackson T J, Schmugge T J. Vegetation effects on the microwave emission of soils[J]. Remote Sensing of Environment, 1991, 36(3):203-212.
[5] Liu X Z, Wigneron J P, Fan L, et al. ASCAT IB:A radar-based vegetation optical depth retrieved from the ASCAT scatterometer satellite[J]. Remote Sensing of Environment, 2021, 264:112587.
[6] Karthikeyan L, Pan M, Konings A G, et al. Simultaneous retrieval of global scale vegetation optical depth,surface roughness,and soil moisture using X-band AMSR-E observations[J]. Remote Sensing of Environment, 2019, 234:111473.
[7] Wang M J, Fan L, Frappart F, et al. An alternative AMSR2 vegetation optical depth for monitoring vegetation at large scales[J]. Remote Sensing of Environment, 2021, 263:112556.
[8] Fernandez-Moran R, Al-Yaari A, Mialon A, et al. SMOS-IC:An alternative SMOS soil moisture and vegetation optical depth product[J]. Remote Sensing, 2017, 9(5):457.
[9] Li X J, Wigneron J P, Fan L, et al. A new SMAP soil moisture and vegetation optical depth product (SMAP-IB):Algorithm,assessment and inter-comparison[J]. Remote Sensing of Environment, 2022, 271:112921.
[10] Zhang H X, Hagan D F T, Dalagnol R, et al. Forest canopy changes in the southern Amazon during the 2019 fire season based on passive microwave and optical satellite observations[J]. Remote Sensing, 2021, 13(12):2238.
[11] Jones M O, Jones L A, Kimball J S, et al. Satellite passive microwave remote sensing for monitoring global land surface phenology[J]. Remote Sensing of Environment, 2011, 115(4):1102-1114.
[12] Liu Y Y, de Jeu R A M, McCabe M F, et al. Global long-term passive microwave satellite-based retrievals of vegetation optical depth[J]. Geophysical Research Letters, 2011, 38(18):L18402.
[13] Liu Y Y, van Dijk A I J M, Miralles D G, et al. Enhanced canopy growth precedes senescence in 2005 and 2010 Amazonian droughts[J]. Remote Sensing of Environment, 2018, 211:26-37.
[14] Tian F, Brandt M, Liu Y Y, et al. Remote sensing of vegetation dynamics in drylands:Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel[J]. Remote Sensing of Environment, 2016, 177:265-276.
[15] Chen X, Liu Y Y, Evans J P, et al. Estimating fire severity and carbon emissions over Australian tropical savannahs based on passive microwave satellite observations[J]. International Journal of Remote Sensing, 2018, 39(20):6479-6498.
[16] van Marle M J E, van der Werf G R, de Jeu R A M, et al. Annual South American forest loss estimates based on passive microwave remote sensing (1990—2010)[J]. Biogeosciences, 2016, 13(2):609-624.
[17] Liu Y Y, van Dijk A I J M, de Jeu R A M, et al. Recent reversal in loss of global terrestrial biomass[J]. Nature Climate Change, 2015, 5(5):470-474..
[18] Fan L, Wigneron J P, Ciais P, et al. Satellite-observed pantropical carbon dynamics[J]. Nature Plants, 2019, 5(9):944-951.
doi: 10.1038/s41477-019-0478-9 pmid: 31358958
[19] Njoku E G, Entekhabi D. Passive microwave remote sensing of soil moisture[J]. Journal of Hydrology, 1996, 184(1):101-129.
[20] Mo T, Choudhury B J, Schmugge T J, et al. A model for microwave emission from vegetation-covered fields[J]. Journal of Geophysical Research-Oceans, 1982, 87(C13):11229-11237.
[21] Meesters A G C, De Jeu R A M, Owe M. Analytical derivation of the vegetation optical depth from the microwave polarization difference index[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2):121-123.
[22] Zhou Z L, Fan L, De Lannoy G, et al. Retrieval of high-resolution vegetation optical depth from Sentinel-1 data over a grassland region in the Heihe River Basin[J]. Remote Sensing, 2022, 14(21):5468.
[23] Liu X Z, Wigneron J P, Frappart F, et al. New ascat vegetation optical depth (IB-VOD) retrievals over Africa[C]// IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2020:5011-5013.
[24] Bindlish R, Barros A P. Parameterization of vegetation backscatter in radar-based,soil moisture estimation[J]. Remote Sensing of Environment, 2001, 76(1):130-137.
[25] Baghdadi N, El Hajj M, Zribi M, et al. Calibration of the water cloud model at C-band for winter crop fields and grasslands[J]. Remote Sensing, 2017, 9(9):969.
[26] Zribi M, Muddu S, Bousbih S, et al. Analysis of L-band SAR data for soil moisture estimations over agricultural areas in the tropics[J]. Remote Sensing, 2019, 11(9):1122.
[27] Vreugdenhil M, Dorigo W A, Wagner W, et al. Analyzing the vegetation parameterization in the TU-Wien ASCAT soil moisture retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6):3513-3531.
[28] Wigneron J P, Jackson T J, O’Neill P, et al. Modelling the passive microwave signature from land surfaces:A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms[J]. Remote Sensing of Environment, 2017, 192:238-262.
[29] Wigneron J P, Li X J, Frappart F, et al. SMOS-IC data record of soil moisture and L-VOD:Historical development,applications and perspectives[J]. Remote Sensing of Environment, 2021, 254:112238.
[30] Konings A G, Piles M, Das N, et al. L-band vegetation optical depth and effective scattering albedo estimation from SMAP[J]. Remote Sensing of Environment, 2017, 198:460-470.
[31] Li X J, Wigneron J P, Frappart F, et al. Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products[J]. Remote Sensing of Environment, 2021, 253:112208.
[32] Du J Y, Kimball J S, Jones L A, et al. A global satellite environmental data record derived from AMSR-E and AMSR2 microwave Earth observations[J]. Earth System Science Data, 2017, 9(2):791-808.
[33] Kerr Y H, Waldteufel P, Richaume P, et al. The SMOS soil moisture retrieval algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5):1384-1403.
[34] Moesinger L, Zotta R M, van der Schalie R, et al. Monitoring vegetation condition using microwave remote sensing:The standardized vegetation optical depth index (SVODI)[J]. Biogeosciences, 2022, 19(21):5107-5123.
[35] Al Bitar A, Mialon A, Kerr Y H, et al. The global SMOS Level 3 daily soil moisture and brightness temperature maps[J]. Earth System Science Data, 2017, 9(1):293-315.
[36] Chan S K, Bindlish R, O’Neill P E, et al. Assessment of the SMAP passive soil moisture product[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8):4994-5007.
[37] Chan S K, Bindlish R, O’Neill P, et al. Development and assessment of the SMAP enhanced passive soil moisture product[J]. Remote Sensing of Environment, 2018, 204:931-941.
doi: 10.1016/j.rse.2017.08.025 pmid: 32943797
[38] Schmugge T J, Jackson T J. A dielectric model of the vegetation effects on the microwave emission from soils[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(4):757-760.
[39] Ulaby F T, Dobson M C, Brunfeldt D R. Improvement of moisture estimation accuracy of vegetation-covered soil by combined active/passive microwave remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 1983, GE-21(3):300-307.
[40] Carver K R, Elachi C, Ulaby F T. Microwave remote-sensing from space[J]. Proceedings of the IEEE, 1985, 73(6):970-996.
[41] Saatchi S S, Moghaddam M. Estimation of crown and stem water content and biomass of boreal forest using polarimetric SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2):697-709.
[42] Saatchi S S, van Zyl J J, Asrar G. Estimation of canopy water content in Konza Prairie grasslands using synthetic aperture radar measurements during FIFE[J]. Journal of Geophysical Research-Atmospheres, 1995, 100(D12):25481-25496.
[43] Liu R, Wen J, Wang X, et al. Derivation of vegetation optical depth and water content in the source region of the Yellow River using the FY-3B microwave data[J]. Remote Sensing, 2019, 11(13):1536.
[44] Baghdadi N, Le Maire G, Bailly J S, et al. Evaluation of ALOS/PALSAR L-band data for the estimation of Eucalyptus plantations aboveground biomass in Brazil[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8):3802-3811.
[45] Teubner I E, Forkel M, Camps-Valls G, et al. A carbon sink-driven approach to estimate gross primary production from microwave satellite observations[J]. Remote Sensing of Environment, 2019, 229:100-113.
doi: 10.1016/j.rse.2019.04.022
[46] Zhou X, Yamaguchi Y, Arjasakusuma S. Distinguishing the vegetation dynamics induced by anthropogenic factors using vegetation optical depth and AVHRR NDVI:A cross-border study on the Mongolian Plateau[J]. Science of the Total Environment, 2018,616-617:730-743.
[47] Liu Y Y, van Dijk A I J M, McCabe M F, et al. Global vegetation biomass change (1988—2008) and attribution to environmental and human drivers[J]. Global Ecology and Biogeography, 2013, 22(6):692-705.
[48] Afshar M H, Al-Yaari A, Yilmaz M T. Comparative evaluation of microwave L-band VOD and optical NDVI for agriculture drought detection over central Europe[J]. Remote Sensing, 2021, 13(7):1251.
[49] Togliatti K, Hartman T, Walker V A, et al. Satellite L-band vegetation optical depth is directly proportional to crop water in the US Corn Belt[J]. Remote Sensing of Environment, 2019, 233:111378.
[50] Brandt M, Wigneron J P, Chave J, et al. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands[J]. Nature Ecology & Evolution, 2018, 2(5):827-835.
[51] Fan L, Wigneron J P, Xiao Q, et al. Evaluation of microwave remote sensing for monitoring live fuel moisture content in the Mediterranean region[J]. Remote Sensing of Environment, 2018, 205:210-223.
[52] Forkel M, Dorigo W, Lasslop G, et al. Recent global and regional trends in burned area and their compensating environmental controls[J]. Environmental Research Communications, 2019, 1(5):051005.
[53] Owe M, de Jeu R, Holmes T. Multisensor historical climatology of satellite-derived global land surface moisture[J]. Journal of Geophysical Research-Earth Surface, 2008, 113(F1):F01002.
[54] Tian F, Wigneron J P, Ciais P, et al. Coupling of ecosystem-scale plant water storage and leaf phenology observed by satellite[J]. Nature Ecology & Evolution, 2018, 2(9):1428-1435.
[55] Momen M, Wood J D, Novick K A, et al. Interacting effects of leaf water potential and biomass on vegetation optical depth[J]. Journal of Geophysical Research-Biogeosciences, 2017, 122(11):3031-3046.
[56] Wigneron J P, Fan L, Ciais P, et al. Tropical forests did not recover from the strong 2015-2016 El Niño event[J]. Science Advances, 2020, 6(6):eaay4603.
[57] Wigneron J P, Kerr Y, Chanzy A, et al. Inversion of surface parameters from passive microwave measurements over a soybean field[J]. Remote Sensing of Environment, 1993, 46(1):61-72.
[58] Saatchi S S, Harris N L, Brown S, et al. Benchmark map of forest carbon stocks in tropical regions across three continents[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(24):9899-9904.
doi: 10.1073/pnas.1019576108 pmid: 21628575
[59] Rodríguez-Fernández J, Mialon A, Mermoz S, et al. An evaluation of SMOS L-band vegetation optical depth (L-VOD) data sets:High sensitivity of L-VOD to above-ground biomass in Africa[J]. Biogeosciences, 2018, 15(14):4627-4645.
[60] Bond W J, Midgley G F. Carbon dioxide and the uneasy interactions of trees and savannah grasses[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2012, 367(1588):601-612.
doi: 10.1098/rstb.2011.0182 pmid: 22232770
[61] Yu H Q, Zhang Q, Sun P, et al. Impact of droughts on winter wheat yield in different growth stages during 2001—2016 in eastern China[J]. International Journal of Disaster Risk Science, 2018, 9(3):376-391.
[62] Dai A G. Increasing drought under global warming in observations and models[J]. Nature Climate Change, 2013, 3(1):52-58.
[63] Liu W T, Kogan F N. Monitoring regional drought using the vegetation condition index[J]. International Journal of Remote Sensing, 1996, 17(14):2761-2782.
[64] Déry S J, Brown R D. Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback[J]. Geophysical Research Letters, 2007, 34(22):L22504.
[65] Zhou L M, Tian Y H, Myneni R B, et al. Widespread decline of Congo rainforest greenness in the past decade[J]. Nature, 2014, 509(7498):86-90.
[66] Jiang H, Song L S, Li Y, et al. Monitoring the reduced resilience of forests in southwest China using long-term remote sensing data[J]. Remote Sensing, 2021, 14(1):32.
[67] Lawal S, Hewitson B, Egbebiyi T S, et al. On the suitability of using vegetation indices to monitor the response of Africa’s terrestrial ecoregions to drought[J]. Science of the Total Environment, 2021, 792:148282.
[68] Penuelas J, Rutishauser T, Filella I. Phenology feedbacks on climate change[J]. Science, 2009, 24(5929):887-888.
[69] Peñuelas J, Filella I. Responses to a warming world[J]. Science, 2001, 294(5543):793-795.
doi: 10.1126/science.1066860 pmid: 11679652
[70] Richardson A D, Keenan T F, Migliavacca M, et al. Climate change,phenology,and phenological control of vegetation feedbacks to the climate system[J]. Agricultural and Forest Meteorology, 2013, 169:156-173.
[71] Zeng Z Z, Piao S L, Li L Z X, et al. Impact of earth greening on the terrestrial water cycle[J]. Journal of Climate, 2018, 31(7):2633-2650.
[72] Garonna I, de Jong R, de Wit A J W, et al. Strong contribution of autumn phenology to changes in satellite-derived growing season length estimates across Europe (1982—2011)[J]. Global Change Biology, 2014, 20(11):3457-3470.
doi: 10.1111/gcb.12625 pmid: 24797086
[73] Tian F, Brandt M, Liu Y Y, et al. Mapping gains and losses in woody vegetation across global tropical drylands[J]. Global Change Biology, 2017, 23(4):1748-1760.
doi: 10.1111/gcb.13464 pmid: 27515022
[74] Tong X, Tian F, Brandt M, et al. Trends of land surface phenology derived from passive microwave and optical remote sensing systems and associated drivers across the dry tropics 1992—2012[J]. Remote Sensing of Environment, 2019, 232:111307.
[75] Chaparro D, Piles M, Vall-Ilossera M, et al. L-band vegetation optical depth for crop phenology monitoring and crop yield assessment[C]// IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2018:8225-8227.
[76] Kilic L, Prigent C, Aires F, et al. Expected performances of the Copernicus imaging microwave radiometer (CIMR) for an all-weather and high spatial resolution estimation of ocean and sea ice parameters[J]. Journal of Geophysical Research-Oceans, 2018, 123(10):7564-7580.
[77] 张菊, 房世波, 刘汉湖. 基于微波数据与光学数据集成的机器学习技术在作物产量估算中的应用[J]. 地球信息科学学报, 2021, 23(6):1082-1091.
doi: 10.12082/dqxxkx.2021.200413
Zhang J, Fang S B, Liu H H. Machine learning approach for estimation of crop yield combining use of optical and microwave remote sensing data[J]. Journal of GeoInformation Science, 2021, 23(6):1082-1091.
[78] 竞霞, 白宗璠, 张腾, 等. 3FLD和反射率荧光指数估测小麦条锈病病情严重度的对比分析[J]. 中国农机化学报, 2019, 40(11):136-142.
doi: 10.13733/j.jcam.issn.2095-5553.2019.11.22
Jing X, Bai Z F, Zhang T, et al. Comparative analysis of 3FLD and reflectivity fluorescence index to estimate the severity of wheat stripe rust disease[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(11):136-142.
[79] 章钊颖, 王松寒, 邱博, 等. 日光诱导叶绿素荧光遥感反演及碳循环应用进展[J]. 遥感学报, 2019, 23(1):37-52.
Zhang Z Y, Wang S H, Qiu B, et al. Retrieval of sun-induced chlorophyll fluorescence and advancements in carbon cycle application[J]. Journal of Remote Sensing, 2019, 23(1):37-52.
[80] 郭铌, 王小平, 王玮, 等. 干旱遥感监测技术进展[J]. 气象科技进展, 2020, 10(3):10-20.
Guo N, Wang X P, Wang W, et al. Review of drought monitoring based on remote sensing technology[J]. Advances in Meteorological Science and Technology, 2020, 10(3):10-20.
[81] 杨天垚, 邱建秀, 肖国安. 华北农业干旱监测与冬小麦估产研究[J]. 生态学报, 2023, 43(5):1936-1947.
Yang T Y, Qiu J X, Xiao G A. Agricultural drought monitoring and winter wheat yield estimation in North China[J]. Acta Ecologica Sinica, 2023, 43(5):1936-1947.
[1] 杨斌, 李丹, 高桂胜, 陈财, 王磊. Sentinel-2A卫星数据处理分析及在干旱河谷提取中的应用[J]. 国土资源遥感, 2018, 30(3): 128-135.
[2] 梁建平, 马大喜, 毛德华, 王宗明. 双台河口国际重要湿地芦苇地上生物量遥感估算[J]. 国土资源遥感, 2016, 28(3): 60-66.
[3] 尹晓利, 张丽, 许君一, 刘良云. 融合数据在草地生物量估算中的应用[J]. 国土资源遥感, 2013, 25(4): 147-154.
[4] 黄燕平, 陈劲松. 基于SAR数据的森林生物量估测研究进展[J]. 国土资源遥感, 2013, 25(3): 7-13.
[5] 苏涛, 冯绍元, 徐英. 基于光能利用效率的区域蒸散量反演模型 ——以玉米种植区为例[J]. 国土资源遥感, 2013, 25(3): 14-19.
[6] 除多, 德吉央宗, 姬秋梅, 唐红. 西藏高原典型草地地上生物量遥感估算[J]. 国土资源遥感, 2013, 25(3): 43-50.
[7] 王迅, 刘书杰, 张晓卫, 郝力壮, 赵月平, 王万邦. 基于HJ-1A/1B数据的高寒草地牧草营养动态监测模型[J]. 国土资源遥感, 2013, 25(3): 183-188.
[8] 侯学会, 牛铮, 黄妮, 许时光. 小麦生物量和真实叶面积指数的高光谱遥感估算模型[J]. 国土资源遥感, 2012, 24(4): 30-35.
[9] 刘菊, 廖静娟, 沈国状. 基于全极化SAR数据反演鄱阳湖湿地植被生物量[J]. 国土资源遥感, 2012, 24(3): 38-43.
[10] 牛婷, 李霞, 林海军, 赵钊, 董道瑞. 塔里木河下游芦苇生物量遥感估算模型研建[J]. 国土资源遥感, 2011, 23(4): 42-45.
[11] 娄雪婷, 曾源, 吴炳方. 森林地上生物量遥感估测研究进展[J]. 国土资源遥感, 2011, 23(1): 1-8.
[12] 龙晶. 沙化土地遥感评价方法[J]. 国土资源遥感, 2005, 17(1): 17-19.
[13] 马建文, 韩秀珍, 哈斯巴干, 张跃进, 汤金仪, 谢志庾. 东亚飞蝗灾害的遥感监测实验[J]. 国土资源遥感, 2003, 15(1): 51-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发