Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (3): 154-162    DOI: 10.6046/zrzyyg.2023092
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
不同上下文比例对损毁建筑遥感场景图片样本集构建的影响
邰佳怡1(), 慎利1(), 乔文凡1, 周吾珍2
1.西南交通大学地球科学与环境工程学院,成都 610097
2.四川省国土科学技术研究院(四川省卫星应用技术中心),成都 610045
Impacts of different proportions of contextual information on the construction of sample sets of remote sensing scene images for damaged buildings
TAI Jiayi1(), SHEN Li1(), QIAO Wenfan1, ZHOU Wuzhen2
1. Faculty of Geosciences and Environment Engineering, Southwest Jiaotong University, Chengdu 610097, China
2. Sichuan Institute of Land Science and Technology, Sichuan Center of Satellite Application Technology, Chengdu 610045, China
全文: PDF(7701 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

基于深度学习的遥感影像场景分析是震后进行损毁评估的重要手段。在损毁建筑影像资源相对稀缺的情况下,构建高质量的遥感场景图片样本集,对提高场景识别和分类精度具有重要意义。作为遥感分析的重要参考依据,上下文信息在场景图片中所占比例是影响样本集构建效果的一个关键因素。目前,样本集构建方法中缺乏对上下文信息合适比例的探索。该文以构建高质量样本集为目标,设计一种调整场景图片上下文信息比例的方法,研究不同上下文信息占比对场景样本集构建的影响,探索上下文信息比例的最佳设置范围。文章构建6组不同上下文信息占比的场景图片样本集,使用5种经典卷积神经网络(convolutional neural network,CNN)进行训练和测试,并依次对每个模型的分类结果和不同上下文信息的分类结果进行分析。研究表明,当上下文信息占比为80%时,CNN网络达到了最佳的分类准确率(92.22%),当上下文信息占比为95%时,则降到89.03%; 在所有的CNN模型中,GoogLeNet的分类表现最好,平均准确率达到93.13%。该研究可以找到场景样本集中合理的上下文信息比例设置范围,有效提高遥感场景图片分类的准确率,为损毁建筑遥感场景图片样本集的制作提供指导。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邰佳怡
慎利
乔文凡
周吾珍
关键词 遥感影像场景分析震后损毁评估上下文信息占比场景图片构建损毁建筑物    
Abstract

Deep learning-based scene analysis of remote sensing images serves as a critical means for post-earthquake damage assessment. Given scarce images of damaged buildings, constructing high-quality sample sets of remote sensing scene images holds crucial significance for improving the accuracy of scene recognition and classification. The proportion of contextual information in scene images, as a significant reference for remote sensing analysis, is a key factor affecting the construction effects of sample sets. Currently, the appropriate proportion of contextual information remains under-studied in the sample set construction method. Aiming to construct high-quality sample sets, this study designed a method for adjusting the proportion of contextual information in scene images. It investigated the impacts of different proportions of contextual information on the construction of scene sample sets, exploring the optimal proportion range of contextual information. This study constructed six sample sets of scene images under different proportions of contextual information for training and testing in five classic convolutional neural network (CNN) models. It analyzed the classification results of all the CNN models under different proportions of contextual information. The results indicate that with the proportion of contextual information being 80%, the classification accuracy of the CNN reached an optimal value of 92.22%, which decreased to 89.03% with the proportion of contextual information at 95%. Among all the CNN models, GoogLeNet exhibited superior classification performance with an average accuracy of 93.13%. This study enables the setting of proper proportion ranges of contextual information in scene sample sets, thus effectively improving the classification accuracy of remote sensing scene images, and guiding the construction of sample sets of remote sensing scene images for damaged buildings.

Key wordsscene analysis of remote sensing images    post-earthquake damage assessment    proportion of contextual information    sample set construction of scene images    damaged building
收稿日期: 2023-04-06      出版日期: 2024-09-03
ZTFLH:  TP751  
基金资助:国家自然科学基金面上项目“基于弱监督深度学习的高分辨率遥感影像灾后损毁建筑物提取研究”(42071386);“基于匀质化分解与解析式合成的栅格类别数据尺度效应建模”(41971330)
通讯作者: 慎 利(1986-),男,博士,副教授,主要从事遥感影像智能解译、资源环境遥感研究等方面的教学与科研工作。Email: rsshenli@outlook.com
作者简介: 邰佳怡(1996-),女,硕士研究生,主要研究方向为摄影测量与遥感。Email: tjy_up@163.com
引用本文:   
邰佳怡, 慎利, 乔文凡, 周吾珍. 不同上下文比例对损毁建筑遥感场景图片样本集构建的影响[J]. 自然资源遥感, 2024, 36(3): 154-162.
TAI Jiayi, SHEN Li, QIAO Wenfan, ZHOU Wuzhen. Impacts of different proportions of contextual information on the construction of sample sets of remote sensing scene images for damaged buildings. Remote Sensing for Natural Resources, 2024, 36(3): 154-162.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023092      或      https://www.gtzyyg.com/CN/Y2024/V36/I3/154
Fig.1  基于CNN网络进行遥感场景图片分类的一般框架
Fig.2  研究区遥感影像
Fig.3  损毁建筑遥感场景图片中上下文信息的示例
Fig.4  裁剪多组遥感场景图片样本的大致流程
Fig.5  不同上下文信息占比的场景图片示例
Fig.6  每个数据集中不同地物类别的分布情况
模型 模型平均 上下文信息占比
70 75 80 85 90 95
AlexNet 90.27 90.40 90.40 90.52 90.63 90.40 89.28
VGGNet 92.18 92.42 92.20 92.59 92.42 92.14 91.30
GoogLeNet 93.13 93.99 94.22 93.99 93.21 92.20 91.19
ResNet 89.62 91.75 91.98 91.81 88.78 86.92 86.48
SqueezeNet 90.66 91.98 91.98 92.20 90.85 90.01 86.92
上下文信息占比平均 92.11 92.16 92.22 91.18 90.33 89.03
Tab.1  分类实验结果表
[1] 董静. 应急部发布2022年全国自然灾害基本情况[EB/OL]. 中国日报中文网, 2023(2023-01-13) [2023-03-08]. https://cn.chinadaily.com.cn/a/202301/13/WS63c14826a3102 ada8b22b340.html.
Dong J. Ministry of Emergency Management released the basic information of natural disasters across the country in 2022[EB/OL].(2023-01-13) [2023-03-08]. https://cn.chinadaily.com.cn/a/202301/13/WS63c14826a3102ada8b22b340.html.
[2] 眭海刚, 刘超贤, 黄立洪, 等. 遥感技术在震后建筑物损毁检测中的应用[J]. 武汉大学学报(信息科学版), 2019, 44(7):1008-1019.
Sui H G, Liu C X, Huang L H, et al. Application of remote sensing technology in earthquake-induced building damage detection[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):1008-1019.
[3] Shafique A, Cao G, Khan Z, et al. Deep learning-based change detection in remote sensing images:A review[J]. Remote Sensing, 2022, 14(4):871.
[4] Li Y, Zhang Y, Zhu Z. Error-tolerant deep learning for remote sensing image scene classification[J]. IEEE Transactions on Cybernetics, 2021, 51(4):1756-1768.
[5] Yu X, Wu X, Luo C, et al. Deep learning in remote sensing scene classification:A data augmentation enhanced convolutional neural network framework[J]. GIScience & Remote Sensing, 2017, 54(5):741-758.
[6] 冯权泷, 陈泊安, 李国庆, 等. 遥感影像样本数据集研究综述[J]. 遥感学报, 2022, 26(4):589-605.
Feng Q L, Chen B A, Li G Q, et al. A review for sample datasets of remote sensing imagery[J]. National Remote Sensing Bulletin, 2022, 26(4):589-605.
[7] Yang Y, Newsam S. Bag-of-visual-words and spatial extensions for land-use classification[C]// Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems.ACM, 2010: 270-279.
[8] Weber E, Kané H. Building disaster damage assessment in satellite imagery with multi-temporal fusion[J/OL]. arXiv, 2020(2020-04-12). http://arxiv.org/abs/2004.05525v1.
[9] Xie Y, Feng D, Chen H, et al. Damaged building detection from post-earthquake remote sensing imagery considering heterogeneity characteristics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:4708417.
[10] Chen S A, Escay A, Haberland C, et al. Benchmark dataset for automatic damaged building detection from post-hurricane remotely sensed imagery[J/OL]. arXiv, 2018(2018-12-13). http://arxiv.org/abs/1812.05581v1.
[11] Gupta R, Goodman B, Patel N, et al. Creating xBD:A dataset for assessing building damage from satellite imagery[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.IEEE, 2019:10-17.
[12] 员娇娇, 胡永利, 孙艳丰, 等. 基于深度学习的小目标检测方法综述[J]. 北京工业大学学报, 2021, 47(3):293-302.
Yuan J J, Hu Y L, Sun Y F, et al. Survey of small object detection methods based on deep learning[J]. Journal of Beijing University of Technology, 2021, 47(3):293-302.
[13] 邓磊, 李海芳. 基于多尺度整体嵌套池化语义的装甲目标检测[J]. 激光与红外, 2022, 52(2):295-304.
Deng L, Li H F. An improve multi-scale holistically-nested pooling semantics for object detection[J]. Laser & Infrared, 2022, 52(2):295-304.
[14] 张路, 廖明生. 一种顾及上下文的遥感影像模糊聚类[J]. 遥感学报, 2006, 10(1):58-65.
Zhang L, Liao M S. Contextual fuzzy clustering of remote sensing imagery[J]. Journal of Remote Sensing, 2006, 10(1):58-65.
[15] 陈丁, 万刚, 李科. 多层特征与上下文信息相结合的光学遥感影像目标检测[J]. 测绘学报, 2019, 48(10):1275-1284.
doi: 10.11947/j.AGCS.2019.20180431
Chen D, Wan G, Li K. Object detection in optical remote sensing images based on combination of multi-layer feature and context information[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(10):1275-1284.
doi: 10.11947/j.AGCS.2019.20180431
[16] Wang C, Qiu X, Huan H, et al. Earthquake-damaged buildings detection in very high-resolution remote sensing images based on object context and boundary enhanced loss[J]. Remote Sensing, 2021, 13(16):3119.
[17] Zhang J, Xie C, Xu X, et al. A contextual bidirectional enhancement method for remote sensing image object detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:4518-4531.
[18] LeCun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4):541-551.
[19] 四川泸定6.8级地震导致房屋道路等基础设施受损严重[EB/OL]. 京报网, 2022(2022-09-06) [2023-03-08]. https://news.bjd.com.cn/2022/09/06/10148564.shtml.
The 6.8-magnitude earthquake in Luding,Sichuan caused serious damage to houses,roads and other infrastructure[EB/OL]. Beijing Daily, 2022(2022-09-06) [2023-03-08]. https://news.bjd.com.cn/2022/09/06/10148564.shtml.
[20] 四川泸定6.8级地震已造成93人遇难、25人失联[EB/OL]. 新浪财经头条网, 2022(2022-09-12) [2023-03-08]. https://cj.sina.com.cn/articles/view/5182171545/134e1a99902001eqoe.
The 6.8-magnitude earthquake in Luding,Sichuan has caused 93 deaths and 25 missing[EB/OL]. Sina Finance Headline, 2022(2022-09-12) [2023-03-08]. https://cj.sina.com.cn/articles/view/5182171545/134e1a99902001eqoe.
[1] 周阳, 张云生, 陈斯飏, 邹峥嵘, 朱耀晨, 赵芮雪. 基于DCNN特征的建筑物震害损毁区域检测[J]. 国土资源遥感, 2019, 31(2): 44-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发