Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (3): 146-153    DOI: 10.6046/zrzyyg.2023133
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
高频域多深度空洞网络的遥感图像全色锐化算法
郭彭浩1(), 邱建林2, 赵淑男3
1.南通理工学院计算机与信息工程学院,南通 226001
2.南通大学信息科学技术学院,南通 226001
3.北方夜视科技(南京)研究院有限公司,南京 211100
A pansharpening algorithm for remote sensing images based on high-frequency domain and multi-depth dilated network
GUO Penghao1(), QIU Jianlin2, ZHAO Shunan3
1. School of Computer and Information Engineering, Nantong Institute of Technology, Nantong 226001, China
2. School of Information Science and Technology, Nantong University, Nantong 226001, China
3. North Night Vision Science and Technology (Nanjing) Research Institute Co., Ltd., Nanjing 211100, China
全文: PDF(5310 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

遥感图像全色锐化是提取多光谱图像的光谱信息和全色图像的结构信息,将其融合成高分辨率多光谱遥感图像的过程。然而,高分辨率多光谱图像会存在光谱或结构信息的缺失问题。为了优化这一问题,该文提出一种基于多深度神经网络的遥感图像全色锐化算法,该算法有结构保护和光谱保护2个模块。结构保护模块使用滤波操作,提取全色图像和多光谱图像的高频信息,然后采用多深度神经网络提取图像的多尺度信息,从而提高模型的空间信息提取能力,减小过拟合的风险; 光谱保护模块通过跳跃连接将上采样的多光谱图像与结构保护模块相连接,以保护图像的光谱信息。为了验证新模型的有效性,在相同实验条件下,将所提方法与多种遥感图像全色锐化算法进行比较,并从主观视觉效果和客观评价2个方面进行评估。实验结果表明,所提方法能够改善当前算法存在的结构信息缺失现象,更好地保护多光谱图像的光谱信息以及全色图像的结构信息。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭彭浩
邱建林
赵淑男
关键词 遥感图像全色锐化多深度网络多尺度学习跳跃连接空谱融合    
Abstract

The pansharpening of remote sensing images is a process that extracts the spectral information of multispectral images and the structural information of panchromatic images and then fuse the information to form high-resolution multispectral remote sensing images, which, however, suffer a lack of spectral or structural information. To mitigate this problem, this study proposed a pansharpening algorithm for remote sensing images based on a multi-depth neural network. This algorithm includes a structural protection module and a spectral protection module. The structural protection module extracts the high-frequency information of panchromatic and multispectral images through filtering and then extracts the multi-scale information of the images using a multi-depth neural network. The purpose is to improve the spatial information extraction ability of the model and to reduce the risk of overfitting. The spectral protection module connects the upsampled multispectral images with the structural protection module through a skip connection. To validate the effectiveness of the new algorithm, this study, under consistent experimental conditions, compared the new algorithm with multiple pansharpening algorithms for remote sensing images and assessed these algorithms from the angles of subjective visual effects and objective evaluation. The results indicate that the algorithm proposed in this study can effectively protect the spectral information of multispectral images and the structural information of panchromatic images in solving the lack of structural information in current algorithms for image fusion.

Key wordsremote sensing pansharpening    multi-depth network    multi-scale learning    skip connection    spatial and spectral fusion
收稿日期: 2023-05-16      出版日期: 2024-09-03
ZTFLH:  TP751.1  
基金资助:国家自然科学基金青年项目“基于非参数层次贝叶斯景深估计模型的水下降质图像质量提升研究”(61701245);南通市科技局项目“基于变分优化和生成对抗网络的遥感图像Pansharpening融合方法研究”(JCZ2022097);“基于学生兴趣模型的个性化推荐方法的研究”(JCZ21096)
作者简介: 郭彭浩(1995-),男,硕士, 助教,研究方向为计算机视觉、遥感图像处理、人工智能。Email: pajiju820@163.com
引用本文:   
郭彭浩, 邱建林, 赵淑男. 高频域多深度空洞网络的遥感图像全色锐化算法[J]. 自然资源遥感, 2024, 36(3): 146-153.
GUO Penghao, QIU Jianlin, ZHAO Shunan. A pansharpening algorithm for remote sensing images based on high-frequency domain and multi-depth dilated network. Remote Sensing for Natural Resources, 2024, 36(3): 146-153.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023133      或      https://www.gtzyyg.com/CN/Y2024/V36/I3/146
Fig.1  网络模型
Fig.2  高频域输入模块
Fig.3  MDS模块结构
Fig.4  模拟数据融合结果
算法 Q SCC Q4 SAM ERGAS
IHS 0.834 6 0.910 6 0.806 8 3.549 1 3.241 0
BDSD 0.922 8 0.940 7 0.910 7 2.822 5 2.206 3
PRACS 0.919 5 0.935 3 0.911 5 2.927 9 2.217 6
MTF-GLP 0.914 8 0.934 8 0.906 6 2.815 7 2.322 0
Indusion 0.841 9 0.879 7 0.829 0 3.274 9 3.494 2
PNN 0.922 9 0.945 6 0.880 7 3.197 0 2.221 6
DMDP 0.911 2 0.924 3 0.887 8 2.661 3 2.395 2
GND 0.936 1 0.954 9 0.918 4 2.277 0 1.916 1
本文算法 0.945 5 0.961 5 0.932 5 2.175 2 1.743 9
理想值 1 1 1 0 0
Tab.1  模拟数据集客观评价指标
Fig.5-1  真实数据融合结果
Fig.5-2  真实数据融合结果
算法 D s D λ QNR
IHS 0.141 6 0.255 3 0.639 6
BDSD 0.065 4 0.179 9 0.767 1
PRACS 0.087 9 0.228 2 0.713 9
MTF-GLP 0.121 5 0.220 7 0.685 5
Indusion 0.113 9 0.603 0 0.350 6
PNN 0.068 5 0.603 5 0.368 3
DMDP 0.085 2 0.168 8 0.761 1
GND 0.073 8 0.110 5 0.822 7
本文算法 0.050 6 0.121 6 0.833 7
理想值 0 0 1
Tab.2  真实数据集客观评价指标
Fig.6  泛化实验融合结果图
测试方案 Q SCC Q4 SAM ERGAS
-UP 0.944 0 0.942 8 0.937 1 3.176 0 2.523 1
-MS 0.9434 0.934 6 0.936 1 3.316 9 2.625 3
-DS 0.947 8 0.934 6 0.941 1 3.215 9 2.543 3
本文算法 0.948 6 0.940 3 0.941 5 3.156 1 2.482 2
理想值 1 1 1 0 0
Tab.3  消融实验客观评价指标
[1] Carper W R, Lillesand T M, Kiefer R. The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data[J]. Photogrammetric Engineering and Remote Sensing, 1990, 56:457-467.
[2] Laben C A, Brower B V. Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening:US6011875[P]. 2000-01-04.
[3] Nason G P, Silverman B W. The stationary wavelet transform and some statistical applications[M]//Antoniadis A,Oppenheim G.Wavelets and Statistics. New York: Springer, 1995:281-299.
[4] Hallabia H, Hamam H, Ben Hamida A. A context-driven pansharpening method using superpixel based texture analysis[J]. International Journal of Image and Data Fusion, 2021, 12(1):1-22.
[5] Ballester C, Caselles V, Igual L, et al. A variational model for P+XS image fusion[J]. International Journal of Computer Vision, 2006, 69(1):43-58.
[6] Fang F, Li F, Shen C, et al. A variational approach for pan-sharpening[J]. IEEE Transactions on Image Processing:A Publication of the IEEE Signal Processing Society, 2013, 22(7):2822-2834.
[7] Fu X, Lin Z, Huang Y, et al. A variational pan-sharpening with local gradient constraints[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach,CA,USA.IEEE, 2019:10257-10266.
[8] Masi G, Cozzolino D, Verdoliva L, et al. Pansharpening by convolutional neural networks[J]. Remote Sensing, 2016, 8(7):594.
[9] Wang T T, Fang F M, Li F, et al. High-quality Bayesian pansharpening[J]. IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society, 2019, 28(1):227-239.
[10] Yang Y, Lu H, Huang S, et al. An efficient and high-quality pansharpening model based on conditional random fields[J]. Information Sciences, 2021, 553:1-18.
[11] Ye F, Guo Y, Zhuang P. Pan-sharpening via a gradient-based deep network prior[J]. Signal Processing:Image Communication, 2019, 74:322-331.
[12] Guo P, Zhuang P, Guo Y. Bayesian pan-sharpening with multiorder gradient-based deep network constraints[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:950-962.
[13] Wang D, Li Y, Ma L, et al. Going deeper with densely connected convolutional neural networks for multispectral pansharpening[J]. Remote Sensing, 2019, 11(22):2608.
[14] Fang F, Zhang G, Li F, et al. Framelet based pan-sharpening via a variational method[J]. Neurocomputing, 2014, 129:362-377.
[15] Scarpa G, Vitale S, Cozzolino D. Target-adaptive CNN-based pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9):5443-5457.
[16] Yuan Q, Wei Y, Meng X, et al. A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3):978-989.
[17] Liu L, Wang J, Zhang E, et al. Shallow-deep convolutional network and spectral-discrimination-based detail injection for multispectral imagery pan-sharpening[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:1772-1783.
[18] Hu J, Hu P, Kang X, et al. Pan-sharpening via multiscale dynamic convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3):2231-2244.
[19] Fu X, Wang W, Huang Y, et al. Deep multiscale detail networks for multiband spectral image sharpening[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(5):2090-2104.
[20] Choi J, Yu K, Kim Y. A new adaptive component-substitution-based satellite image fusion by using partial replacement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1):295-309.
[21] 谭海, 张荣军, 樊文锋, 等. 融合多尺度特征的国产光学影像辐射异常分类检测[J]. 自然资源遥感, 2022, 34(4):97-104.doi:10.6046/zrzyyg.2021377.
Tan H, Zhang R J, Fan W F, et al. Classification and detection of radiation anomalies in Chinese optical satellite images by integrating multi-scale features[J]. Remote Sensing for Natural Resources, 2022, 34(4):97-104.doi:10.6046/zrzyyg.2021377.
[22] Garbin C, Zhu X, Marques O. Dropout vs.batch normalization:An empirical study of their impact to deep learning[J]. Multimedia Tools and Applications, 2020, 79(19):12777-12815.
[23] Nair V, Hinton G E. Rectified linear units improve restricted boltzmann machines[C]// Proceedings of the 27th International Conference on International Conference on Machine Learning.ACM, 2010:807-814.
[24] 韩彦岭, 崔鹏霞, 杨树瑚, 等. 基于残差网络特征融合的高光谱图像分类[J]. 国土资源遥感, 2021, 33(2):11-19.doi:10.6046/gtzyyg.2020209.
Han Y L, Cui P X, Yang S H, et al. Classification of hyperspectral image based on feature fusion of residual network[J]. Remote Sensing for Land and Resources, 2021, 33(2):11-19.doi:10.6046/gtzyyg.2020209.
[25] Qiu D, Zheng L, Zhu J, et al. Multiple improved residual networks for medical image super-resolution[J]. Future Generation Computer Systems, 2021, 116:200-208.
[26] Garzelli A, Nencini F, Capobianco L. Optimal MMSE pan sharpening of very high resolution multispectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1):228-236.
[27] Alparone L, Wald L, Chanussot J, et al. Comparison of pansharpening algorithms:Outcome of the 2006 GRS-S data-fusion contest[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10):3012-3021.
[28] Khan M M, Chanussot J, Condat L, et al. Indusion:Fusion of multispectral and panchromatic images using the induction scaling technique[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(1):98-102.
[1] 张春桂, 彭继达. 基于气象和遥感的空气清新度监测技术研究[J]. 自然资源遥感, 2024, 36(3): 163-173.
[2] 刘永新, 张思源, 边鹏, 王丕军, 袁帅. 1989—2020年黄河流域巴彦淖尔段地表覆盖类型时空演变研究[J]. 自然资源遥感, 2024, 36(2): 207-217.
[3] 李雷, 孙希延, 纪元法, 付文涛. 融合超像素和多属性形态学轮廓方法的高光谱图像分类[J]. 自然资源遥感, 2023, 35(4): 114-121.
[4] 邓丁柱. 基于深度学习的多源卫星遥感影像云检测方法[J]. 自然资源遥感, 2023, 35(4): 9-16.
[5] 龙恩, 吕守业, 钱国栋, 连翠萍, 杨宇科, 陈玲艳. 基于云+端的天基遥感服务模式研究[J]. 自然资源遥感, 2023, 35(1): 258-264.
[6] 刘广进, 王光辉, 毕卫华, 刘慧杰, 杨化超. 基于DenseNet与注意力机制的遥感影像云检测算法[J]. 自然资源遥感, 2022, 34(2): 88-96.
[7] 曲海成, 王雅萱, 申磊. 多感受野特征与空谱注意力结合的高光谱图像超分辨率算法[J]. 自然资源遥感, 2022, 34(1): 43-52.
[8] 刘万军, 高健康, 曲海成, 姜文涛. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3): 97-106.
[9] 仇一帆, 柴登峰. 无人工标注数据的Landsat影像云检测深度学习方法[J]. 国土资源遥感, 2021, 33(1): 102-107.
[10] 卫虹宇, 赵银娣, 董霁红. 基于改进RetinaNet的冷却塔目标检测[J]. 国土资源遥感, 2020, 32(4): 68-73.
[11] 刘尚旺, 崔智勇, 李道义. 基于Unet网络多任务学习的遥感图像建筑地物语义分割[J]. 国土资源遥感, 2020, 32(4): 74-83.
[12] 梁凯旋, 章桂芳, 张浩然. 一种综合DEM和遥感影像提取洪积扇的方法[J]. 国土资源遥感, 2020, 32(2): 138-145.
[13] 宋仁波, 朱瑜馨, 丁上珊, 贺巧宁, 王细元, 王月香. 基于GIS空间分析的任意多边形骨架线自动提取方法[J]. 国土资源遥感, 2020, 32(1): 51-59.
[14] 吴柳青, 胡翔云. 基于多尺度多特征的高空间分辨率遥感影像建筑物自动化检测[J]. 国土资源遥感, 2019, 31(1): 71-78.
[15] 张永梅, 孙海燕, 胥玉龙. 一种改进的基于超像素的多光谱图像分割方法[J]. 国土资源遥感, 2019, 31(1): 58-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发