Please wait a minute...
 
自然资源遥感  2024, Vol. 36 Issue (4): 158-164    DOI: 10.6046/zrzyyg.2023117
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于CNN与SETR的特征融合滑坡体检测
李世琦(), 姚国清()
中国地质大学(北京)信息工程学院,北京 100083
A landslide detection method using CNN- and SETR-based feature fusion
LI Shiqi(), YAO Guoqing()
School of Information Engineering, China University of Geosciences(Beijing), Beijing 100083, China
全文: PDF(3900 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

准确、及时地检测出滑坡体对减少山体滑坡自然灾害对人类生命和财产造成的威胁与损失具有重要意义。论文提出了一种基于卷积神经网络(convolutional neural network,CNN)与Set Transformer(SETR)的特征融合滑坡体检测方法。基于CNN的网络模型选择了全卷积网络(fully convolutional network,FCN)、U-Net和Deeplabv3+,基于Transformer的模型选择了SETR。首先对CNN网络模型在滑坡检测中的效果进行评价,然后在CNN网络模型的编码器部分引入SETR,并将SETR的输出融合到CNN的解码器结构中作为模型的整体输出。基于LandSlide4Sense数据集的实验结果表明,典型CNN融合SETR后有效改善了模型的检测效果,FCN,U-Net,Deeplabv3+模型在融合SETR后F1分数分别从0.672 6,0.727 3,0.687 3提高到0.686 9,0.743 0,0.705 5。因为滑坡与地形密切相关,以效果最好的U-Net模型为基准,在模型输入中引入数字高程模型之后F1分数从0.732 5提高到0.750 3。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李世琦
姚国清
关键词 CNNSETR滑坡体检测语义分割    
Abstract

The accurate and timely detection of landslides is of great significance for reducing the threats to human life and properties, along with relevant losses, caused by landslides. This study proposed a landslide detection method using feature fusion based on convolutional neural networks (CNNs) and Segmentation Transformer (SETR). The CNN-based models utilized a fully convolutional network (FCN), U-Net, and Deeplabv3+, while the Transformer-based models used SETR. First, the landslide detection effects of the CNN-based models were evaluated. Then, SETR was introduced into the encoders of the CNN-based models, and the output of SETR was fused into the CNN decoder structure as the final output of the models. The experiments using the LandSlide4Sense dataset indicate that the fusion of typical CNNs with SETR can effectively improve the landslide detection effects. After SETR fusion, the FCN, U-Net, and Deeplabv3+ models exhibited higher F1-scores, which increased from 0.672 6, 0.727 3, and 0.687 3 to 0.686 9, 0.743 0, and 0.705 5, respectively. Given the close relationship between landslides and terrain, a digital elevation model (DEM) was incorporated into the U-Net model, which outperformed other models. As a result, the F1-score of the model increased from 0.732 5 to 0.750 3.

Key wordsCNN    SETR    landslide detection    semantic segmentation
收稿日期: 2023-04-26      出版日期: 2024-12-23
ZTFLH:  TP79  
通讯作者: 姚国清(1964-),男,硕士,教授,主要从事遥感图像处理与信息提取研究。Email: gqyao@cugb.edu.cn
作者简介: 李世琦(1998-),男,硕士研究生,主要从事计算机图像智能分析研究。Email: 895229712@qq.com
引用本文:   
李世琦, 姚国清. 基于CNN与SETR的特征融合滑坡体检测[J]. 自然资源遥感, 2024, 36(4): 158-164.
LI Shiqi, YAO Guoqing. A landslide detection method using CNN- and SETR-based feature fusion. Remote Sensing for Natural Resources, 2024, 36(4): 158-164.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023117      或      https://www.gtzyyg.com/CN/Y2024/V36/I4/158
Fig.1  实验数据示意图
Fig.2  实验流程图
Fig.3  SETR结构示意图
Fig.4  U-Net+SETR示意图
Fig.5  Deeplabv3+SETR示意图
Fig.6  FCN+SETR示意图
Fig.7  滑坡坡度数据和DEM提取流程
遥感影像 真实标签 U-Net U-Net
+SETR
Deeplabv3+ Deeplabv3+
+SETR
FCN FCN+SETR
Tab.1  实验结果对比图
遥感影像 真实标签 U-Net+DEM U-Net+DEM
+SETR
Tab.2  加大DEM权重实验结果对比图
模型指标 U-Net U-Net+
SETR
Deep-
labv3+
Deeplabv3+
+SETR
FCN FCN+
SETR
召回率/% 68.47 74.26 61.58 66.13 68.83 65.13
准确率/% 77.56 74.34 77.77 75.60 65.75 72.65
F1分数 0.727 3 0.743 0 0.687 3 0.705 5 0.672 6 0.686 9
F1提升/% 2.16 2.65 2.13
Tab.3  CNN模型融合SETR性能对比
模型指标 U-Net U-Net+
SETR
U-Net+
DEM
U-Net+
DEM+SETR
召回率/% 68.47 74.26 69.15 75.34
准确率/% 77.56 74.34 77.88 74.73
F1分数 0.727 3 0.743 0 0.732 5 0.750 3
F1提升/% 2.16 2.43
Tab.4  U-Net模型加大DEM权重性能对比
[1] 王宇. 基于深度学习的遥感图像滑坡信息提取算法研究[D]. 哈尔滨: 黑龙江大学, 2020.
Wang Y. Research on landslide information extraction algorithm from remote sensing images based on deep learning[D]. Harbin: Helongjiang University, 2020.
[2] 张帅娟. 变化检测和面向对象结合的高分辨率遥感影像滑坡体提取方法研究[D]. 成都: 西南交通大学, 2017.
Zhang S J. Study on landslide extraction method from high-resolution remote sensing images by combining change detection with object-oriented method[D]. Chengdu: Southwest Jiaotong University, 2017.
[3] 张雨, 明冬萍, 赵文祎, 等. 基于高分光学卫星影像的泸定地震型滑坡提取与分析[J]. 自然资源遥感, 2023, 35(1): 161-170.doi:10.6046/zrzyyg.2022434.
Zhang Y, Ming D P, Zhao W Y, et al. The extraction and analysis of Luding earthquake-induced landslide based on high-resolution optical satellite images[J]. Remote Sensing for Natural Resources, 2023, 35(1):161-170.doi: 10.6046/zrzyyg.2022434.
[4] 张越, 宋炜炜. 基于BP神经网络和决策树的昆明市东川区滑坡空间易发性评价[J]. 国土与自然资源研究, 2023(2):67-70.
Zhang Y, Song W W. Spatial susceptibility evaluation of landslide in Dongchuan District of Kunming based on BP neural network and decision tree[J]. Territory & Natural Resources Study, 2023(2):67-70.
[5] 余淙蔚, 柳侃, 殷杰, 等. 一种适用于逻辑回归模型评价浅层滑坡易发性的网格尺度划分方法——以2019年福建省三明市群发浅层滑坡为例[J]. 山地学报, 2022, 40(1): 106-119.
Yu C W, Liu K, Yin J, et al. A grid-scale division method applicable to logistic regression models for evaluating the susceptibility of shallow landslides: Taking the 2019 cluster of shallow landslides in Sanming,Fujian as example[J]. Mountain Research, 2022, 40(1):106-119.
[6] 许高程, 张文君, 王卫红. 支持向量机技术在遥感影像滑坡体提取中的应用[J]. 安徽农业科学, 2009, 37(6):2781-2782,2822.
Xu G C, Zhang W J, Wang W H. Application of supporting vector machine technology in extraction of remote sensing image of landslide[J]. Journal of Anhui Agricultural Sciences, 2009, 37(6):2781-2782,2822.
[7] 牛朝阳, 高欧阳, 刘伟, 等. 光学遥感图像滑坡检测研究进展[J]. 航天返回与遥感, 2023, 44(3):133-144.
Niu C Y, Gao O Y, Liu W, et al. Research progress of landslide detection in optical remote sensing images[J]. Spacecraft Recovery & Remote Sensing, 2023, 44(3):133-144.
[8] Yu B, Chen F, Xu C. Landslide detection based on contour-based deep learning framework in case of national scale of Nepal in 2015[J]. Computers & Geosciences, 2020, 135:104388.
[9] Ji S, Yu D, Shen C, et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 2020, 17(6):1337-1352.
[10] Liu P, Wei Y, Wang Q, et al. Research on post-earthquake landslide extraction algorithm based on improved U-net model[J]. Remote Sensing, 2020, 12(5):894.
[11] 杨昭颖, 韩灵怡, 郑向向, 等. 基于卷积神经网络的遥感影像及DEM滑坡识别——以黄土滑坡为例[J]. 自然资源遥感, 2022, 34(2):224-230.doi :10.6046/zrzyyg.2021204.
Yang Z Y, Han L Y, Zheng X X, et al. Landslide identification using remote sensing images and DEM based on convolutional neural network:A case study of loess landslide[J]. Remote Sensing for Natural Resources, 2022, 34(2):224-230.doi :10.6046/zrzyyg.2021204.
[12] Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[C]// IEEE Transactions on Pattern Analysis and Machine Intelligence.IEEE, 2017:640-651.
[13] Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[M]//Navab N,Hornegger J,Wells W M,et al,eds.Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015:234-241.
[14] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// European Conference on Computer Vision.Cham:Springer, 2018:833-851.
[15] 白石, 唐攀攀, 苗朝, 等. 基于高分辨率遥感影像和改进 U-Net 模型的滑坡提取——以汶川地区为例[J]. 自然资源遥感, 2024, 36(3):96-107.doi:10.6046/zrzyyg.2023132.
Bai S, Tang P P, Miao Z, et al. Information extraction of landslide based on high resolution remote sensing images and an improved U-Net model:A case study of Wenchuan,Sichuan[J]. Remote Sensing for Natural Resources, 2024, 36(3):96-107.doi:10.6046/zrzyyg.2023132.
[16] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words:Transformers for image recognition at scale[J/OL]. arXiv, 2020. https://arxiv.org/abs/2010.11929v1.
[17] Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers[C]// Vedaldi A,Bischof H,Brox T,et al.European Conference on Computer Vision.Cham:Springer, 2020:213-229.
[18] Liu Z, Lin Y, Cao Y, et al. Swin transformer:Hierarchical vision transformer using shifted windows[J/OL]. arXiv, 2021. https://arxiv.org/abs/2103.14030v2.
[19] Xie E Z, Wang W H, Yu Z D, et al. SegFormer:Simple and efficient design for semantic segmentation with Transformers[J/OL]. arXiv, 2021. https://arxiv.org/abs/2105.15203.
[20] 张思远, 谭晓玲, 朱木雷, 等. 基于改进Swin Transformer的滑坡分割算法[J]. 国外电子测量技术, 2023, 42(11):49-56.
Zhang S Y, Tan X L, Zhu M L, et al. Landslide segmentation algorithm based on improved Swin Transformer[J]. Foreign Electronic Measurement Technology, 2023, 42(11):49-56.
[21] Chollet F. Xception:Deep learning with depthwise separable convolutions[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,HI,USA.IEEE, 2017:1800-1807.
[1] 曲海成, 梁旭. 融合混合注意力机制与多尺度特征增强的高分影像建筑物提取[J]. 自然资源遥感, 2024, 36(4): 107-116.
[2] 潘俊杰, 慎利, 鄢薪, 聂欣, 董宽林. 一种基于对抗学习的高分辨率遥感影像语义分割无监督域自适应方法[J]. 自然资源遥感, 2024, 36(4): 149-157.
[3] 苏腾飞. 深度卷积语义分割网络在农田遥感影像分类中的对比研究——以河套灌区为例[J]. 自然资源遥感, 2024, 36(4): 210-217.
[4] 罗维, 李修华, 覃火娟, 张木清, 王泽平, 蒋柱辉. 基于多源卫星遥感影像的广西中南部地区甘蔗识别及产量预测[J]. 自然资源遥感, 2024, 36(3): 248-258.
[5] 白石, 唐攀攀, 苗朝, 金彩凤, 赵博, 万昊明. 基于高分辨率遥感影像和改进U-Net模型的滑坡提取——以汶川地区为例[J]. 自然资源遥感, 2024, 36(3): 96-107.
[6] 林佳惠, 刘广, 范景辉, 赵红丽, 白世彪, 潘宏宇. 联合改进U-Net模型和D-InSAR技术采矿沉陷提取方法[J]. 自然资源遥感, 2023, 35(3): 145-152.
[7] 刘立, 董先敏, 刘娟. 顾及地学特征的遥感影像语义分割模型性能评价方法[J]. 自然资源遥感, 2023, 35(3): 80-87.
[8] 刁明光, 刘勇, 郭宁博, 李文吉, 江继康, 王云霄. 基于Mask R-CNN的遥感影像疏林地智能识别方法[J]. 自然资源遥感, 2023, 35(2): 97-104.
[9] 赵凌虎, 袁希平, 甘淑, 胡琳, 丘鸣语. 改进Deeplabv3+的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35(1): 107-114.
[10] 孟琮棠, 赵银娣, 韩文泉, 何晨阳, 陈锡秋. 基于RandLA-Net的机载激光雷达点云城市建筑物变化检测[J]. 自然资源遥感, 2022, 34(4): 113-121.
[11] 沈骏翱, 马梦婷, 宋致远, 柳汀洲, 张微. 基于深度学习语义分割模型的高分辨率遥感图像水体提取[J]. 自然资源遥感, 2022, 34(4): 129-135.
[12] 王华俊, 葛小三. 一种轻量级的DeepLabv3+遥感影像建筑物提取方法[J]. 自然资源遥感, 2022, 34(2): 128-135.
[13] 廖廓, 聂磊, 杨泽宇, 张红艳, 王艳杰, 彭继达, 党皓飞, 冷伟. 基于多维卷积神经网络的多源高分辨率卫星影像茶园分类[J]. 自然资源遥感, 2022, 34(2): 152-161.
[14] 郭文, 张荞. 基于注意力增强全卷积神经网络的高分卫星影像建筑物提取[J]. 国土资源遥感, 2021, 33(2): 100-107.
[15] 安健健, 孟庆岩, 胡蝶, 胡新礼, 杨健, 杨天梁. 基于Faster R-CNN的火电厂冷却塔检测及工作状态判定[J]. 国土资源遥感, 2021, 33(2): 93-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发