Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (1): 24-30    DOI: 10.6046/gtzyyg.2023212
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
结合NSCT变换和引导滤波的多光谱图像全色锐化算法
徐欣钰1(), 李小军1,2,3(), 盖钧飞1, 李轶鲲1,2,3
1.兰州交通大学测绘与地理信息学院, 兰州 730070
2.地理国情监测技术应用国家地方联合工程研究中心,兰州 730070
3.甘肃省地理国情监测工程实验室,兰州 730070
A multispectral image pansharpening algorithm based on nonsubsampled contourlet transform (NSCT) combined with a guided filter
XU Xinyu1(), LI Xiaojun1,2,3(), GE Junfei1, LI Yikun1,2,3
1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
2. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China
3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
全文: PDF(5246 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

遥感图像融合技术能够将两幅或多幅多源遥感图像信息进行互补、增强,使图像携带的信息更加准确和全面。非下采样轮廓波变换(nonsubsampled contourlet transform, NSCT)对遥感数字图像进行多尺度多方向分解,有益于提取高分遥感图像细节,从而实现图像的锐化高空间分辨率,但传统NSCT直接生成的高频细节信息过少,且容易产生“虚影”现象。基于此,论文结合NSCT与引导滤波(guided filter, GF),提出了一种新的遥感图像全色锐化融合算法。该算法通过NSCT变换的多尺度多方向分解与重构特性,提取直方图匹配后的图像的细节分量,同时结合GF提取具有全色细节特征的多光谱细节分量,最终通过加权细节信息锐化获得高空-谱融合结果。通过多个高分遥感数据集的主客观评价验证了所提出算法有效性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐欣钰
李小军
盖钧飞
李轶鲲
关键词 非下采样轮廓波变换引导滤波遥感图像融合全色锐化    
Abstract

Remote sensing image fusion technology can combine and enhance information from two or more multi-source remote sensing images, making the fused image more accurate and comprehensive. The nonsubsampled contourlet transform (NSCT) is effective in extracting details from high-resolution remote sensing images through multi-scale and multi-directional decomposition, thus achieving image sharpening with high spatial resolution. However, traditional NSCT produces limited high-frequency details and is prone to introduce artifacts such as “ghosting” in fused images. To address this issue, the study proposed a new panchromatic sharpening fusion algorithm for remote sensing images by combining NSCT with a guided filter (GF). Specifically, the promoted algorithm extracted the detail components from histogram-matched images using the multi-scale, multi-direction decomposition and reconstruction properties of the NSCT. Meanwhile, it extracted multi-spectral detail components with panchromatic detail features using GF. Finally, the fused images with high-spatial and high-spectral resolutions were obtained by sharpening based on weighted detail components. The proposed algorithm was proved effective through both subjective and objective evaluations using multiple high-resolution remote sensing datasets.

Key wordsnonsubsampled contourlet transform    guided filter    remote sensing image fusion    panchromatic sharpening
收稿日期: 2023-07-14      出版日期: 2025-02-17
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“基于脉冲耦合神经网络的高光谱遥感图像融合方法研究”(41861055);中国博士后基金项目(2019M653795);兰州交通大学优秀平台(201806)
通讯作者: 李小军(1982-),男,副教授,主要研究遥感数字图像处理、神经网络等方向。Email: xjli@mail.lzjtu.cn
作者简介: 徐欣钰(1999-),女,硕士研究生,主要研究遥感图像融合方向。Email: 11210900@stu.lzjtu.edu.cn
引用本文:   
徐欣钰, 李小军, 盖钧飞, 李轶鲲. 结合NSCT变换和引导滤波的多光谱图像全色锐化算法[J]. 自然资源遥感, 2025, 37(1): 24-30.
XU Xinyu, LI Xiaojun, GE Junfei, LI Yikun. A multispectral image pansharpening algorithm based on nonsubsampled contourlet transform (NSCT) combined with a guided filter. Remote Sensing for Natural Resources, 2025, 37(1): 24-30.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2023212      或      https://www.gtzyyg.com/CN/Y2025/V37/I1/24
Fig.1  NSCT二级分解示意图
Fig.2  本文全色锐化算法流程
Fig.3  WV-2数据集全色锐化结果
Fig.4  GF-2数据集全色锐化结果
方法 全分辨率评价 降分辨率评价
Dλ Ds QNR Q4 SAM ERGAS UIQI CC
本文算法 0.020 3 0.034 1 0.946 2 0.705 3 3.533 7 5.238 4 0.725 2 0.861 2
GSA 0.103 0 0.399 9 0.538 3 0.670 6 4.609 1 6.356 8 0.682 9 0.827 7
HPF 0.063 8 0.129 7 0.814 8 0.688 5 3.739 0 5.534 1 0.699 6 0.846 1
SFIM 0.059 3 0.131 1 0.817 4 0.691 0 3.826 1 5.621 6 0.706 8 0.843 3
Indusion 0.042 3 0.109 2 0.853 0 0.588 5 3.979 7 6.725 8 0.601 7 0.777 7
MTF-GLP-HPM-PP 0.113 6 0.268 9 0.648 1 0.701 7 4.115 7 5.616 7 0.714 6 0.847 0
MTF-GLP-CBD 0.042 6 0.132 7 0.830 4 0.698 6 4.293 6 5.740 5 0.711 4 0.849 0
Tab.1  WorldView-2图像客观评价指标计算结果
方法 全分辨率评价 降分辨率评价
Dλ Ds QNR Q4 SAM ERGAS UIQI CC
本文算法 0.034 2 0.062 7 0.905 2 0.802 5 3.855 1 4.230 8 0.798 2 0.868 9
GSA 0.123 3 0.355 7 0.564 9 0.753 6 5.221 9 5.804 6 0.698 9 0.807 7
HPF 0.070 5 0.153 2 0.787 1 0.798 3 3.965 5 4.491 9 0.781 3 0.852 0
SFIM 0.066 7 0.161 4 0.782 7 0.795 2 4.021 1 4.588 0 0.773 3 0.848 4
Indusion 0.041 5 0.112 8 0.850 4 0.655 0 4.326 7 5.957 6 0.626 5 0.734 3
MTF-GLP-HPM-PP 0.119 6 0.267 6 0.644 8 0.798 3 4.523 9 4.661 7 0.764 4 0.848 3
MTF-GLP-CBD 0.061 4 0.183 2 0.766 6 0.781 6 4.861 3 5.265 3 0.739 0 0.831 8
Tab.2  GF-2图像客观评价指标计算结果
[1] Hu J, Hu P, Wang Z, et al. Spatial dynamic selection network for remote-sensing image fusion[J]. IEEE Geoscience and Remote Sensing Letters, 2021,19:8013205.
[2] Cao S Y, Hu X J. Dynamic prediction of urban landscape pattern based on remote sensing image fusion[J]. International Journal of Environmental Technology and Management, 2021, 24(1/2):18.
[3] Xu J, Luo C, Chen X, et al. Remote sensing change detection based on multidirectional adaptive feature fusion and perceptual similarity[J]. Remote Sensing, 2021, 13(15):3053.
[4] Li H, Song D, Liu Y, et al. Automatic pavement crack detection by multi-scale image fusion[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6):2025-2036.
[5] 盖钧飞, 李小军, 赵鹤婷, 等. 结合脉冲耦合神经网络的自适应全色锐化算法[J]. 测绘科学, 2023, 48(1):60-69.
Ge J F, Li X J, Zhao H T, et al. Adaptive panchromatic sharpening algorithm with pulse coupled neural network[J]. Science of Surveying and Mapping, 2023, 48(1):60-69.
[6] Wady S M A, Bentoutou Y, Bengermikh A, et al. A new IHS and wavelet based pansharpening algorithm for high spatial resolution satellite imagery[J]. Advances in Space Research, 2020, 66(7):1507-1521.
[7] Dadrass Javan F, Samadzadegan F, Mehravar S, et al. A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021,171:101-117.
[8] Wu Z, Huang Y, Zhang K. Remote sensing image fusion method based on PCA and curvelet transform[J]. Journal of the Indian Society of Remote Sensing, 2018, 46(5):687-695.
[9] 张涛, 刘军, 杨可明, 等. 结合Gram-Schmidt变换的高光谱影像谐波分析融合算法[J]. 测绘学报, 2015, 44(9):1042-1047.
doi: 10.11947/j.AGCS.2015.20140637
Zhang T, Liu J, Yang K M, et al. Fusion algorithm for hyperspectral remote sensing image combined with harmonic analysis and gram-schmidt transform[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(9):1042-1047.
doi: 10.11947/j.AGCS.2015.20140637
[10] 吴一全, 王志来. 混沌蜂群优化的NSST域多光谱与全色图像融合[J]. 遥感学报, 2017, 21(4):549-557.
Wu Y Q, Wang Z L. Multispectral and panchromatic image fusion using chaotic Bee Colony optimization in NSST domain[J]. Journal of Remote Sensing, 2017, 21(4):549-557.
[11] Jin H, Wang Y. A fusion method for visible and infrared images based on contrast pyramid with teaching learning based optimization[J]. Infrared Physics & Technology, 2014,64:134-142.
[12] Do M N, Vetterli M. The contourlet transform:An efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing:A Publication of the IEEE Signal Processing Society, 2005, 14(12):2091-2106.
[13] Lim W Q. The discrete shearlet transform:A new directional transform and compactly supported shearlet frames[J]. IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society, 2010, 19(5):1166-1180.
[14] Singh H, Cristobal G, Blanco S, et al. Nonsubsampled contourlet transform based tone-mapping operator to optimize the dynamic range of diatom shells[J]. Microscopy Research and Technique, 2021, 84(9):2034-2045.
[15] 徐欣钰, 李小军, 赵鹤婷, 等. NSCT和PCNN相结合的遥感图像全色锐化算法[J/OL]. 自然资源遥感,[2023-09-18].http://kns.cnki.net/kcms/detail/10.1759.P.20221102.1831.020.html.
Xu X Y, Li X J, Zhao H T, et al. Pansharpening algorithm of remote sensing images based on by combining NSCT and PCNN[J]. Remote Sensing for Natural Resources.[2023-09-18].http://kns.cnki.net/kcms/detail/10.1759.P.20221102.1831.020.html.
[16] Cunha A L, Zhou J, Do M N. The nonsubsampled contourlet transform:Theory,design,and applications[J]. IEEE Transactions on Image Processing:A Publication of the IEEE Signal Processing Society, 2006, 15(10):3089-3101.
[17] He K, Sun J, Tang X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12):2341-2353.
doi: 10.1109/TPAMI.2010.168 pmid: 20820075
[18] He K, Sun J, Tang X. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6):1397-1409.
doi: 10.1109/TPAMI.2012.213 pmid: 23599054
[19] Choi J, Yu K, Kim Y. A new adaptive component-substitution-based satellite image fusion by using partial replacement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1):295-309.
[20] 张立福, 彭明媛, 孙雪剑, 等. 遥感数据融合研究进展与文献定量分析(1992-2018)[J]. 遥感学报, 2019, 23(4):603-619.
Zhang L F, Peng M Y, Sun X J, et al. Progress and bibliometric analysis of remote sensing data fusion methods(1992-2018)[J]. Journal of Remote Sensing, 2019, 23(4):603-619.
[21] Wald L, Ranchin T, Mangolini M. Fusion of satellite images of different spatial resolutions:Assessing the quality of resulting images[J]. Photogrammetric Engineering and Remote Sensing, 1997, 63(6):691-699.
[22] Aiazzi B, Baronti S, Selva M. Improving component substitution pansharpening through multivariate regression of MS+Pan data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10):3230-3239.
[23] Vivone G, Dalla Mura M, Garzelli A, et al. A new benchmark based on recent advances in multispectral pansharpening:Revisiting pansharpening with classical and emerging pansharpening methods[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(1):53-81.
[24] Vivone G, Alparone L, Chanussot J, et al. A critical comparison among pansharpening algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5):2565-2586.
[1] 宋嘉鑫, 李轶鲲, 杨树文, 李小军. 基于后验概率空间变化向量分析的NSCT高分辨率遥感影像变化检测[J]. 自然资源遥感, 2024, 36(3): 128-136.
[2] 郭彭浩, 邱建林, 赵淑男. 高频域多深度空洞网络的遥感图像全色锐化算法[J]. 自然资源遥感, 2024, 36(3): 146-153.
[3] 赵鹤婷, 李小军, 徐欣钰, 盖钧飞. 基于ICM的高光谱图像自适应全色锐化算法[J]. 自然资源遥感, 2024, 36(2): 97-104.
[4] 徐欣钰, 李小军, 赵鹤婷, 盖钧飞. NSCT和PCNN相结合的遥感图像全色锐化算法[J]. 自然资源遥感, 2023, 35(3): 64-70.
[5] 付昱凯, 杨树文, 闫恒, 薛庆, 洪卫丽, 苏航. 耦合非局部自相似性与散度的SAR与光学影像融合[J]. 自然资源遥感, 2023, 35(1): 99-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发