Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (2) : 34-40     DOI: 10.6046/gtzyyg.2012.02.07
Technology and Methodology |
A Comparative Study of Extraction Methods for Alteration Information Based on ETM+
ZHANG Nan-nan1,2, ZHOU Ke-fa1,3, CHEN Xi1, LI Hong2
1. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
2. Remote Sensing Center of Xinjiang Uyghur Autonomous Region, Urumqi 830011, China;
3. Xinjiang Research Center for Mineral Resources, Chinese Academy of Sciences, Urumqi 830011, China
Download: PDF(3319 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  In order to understand,grasp and apply the characteristics of altered wall rock and the original rock from microcosmic and macroscopic angles and look for large deposits or large ore districts,the authors summarized the common extraction models of alteration information,combined the principal component analysis (PCA) with support vector machines (SVM) to establish the MASK process-PCA-SVM(MPS) model,applied and comparatively studied these models in Hatu area of Xinjiang,and made use of the two methods to verify the extraction results. The results show that the extracting results of the common models are rather poorly consistent with the known deposits, but the alteration information extracted by MPS model is better concordant with the known mineral deposits and altered belts,with the coincidence rate arriving at 86.51%. The combination of geological experts' knowledge with geological maps and a known anomaly spot reveals that the result of MPS model is in accord with the geological fact. Therefore, the extracting precision based on MPS model is higher than that of the common models, and the effect of application is fairly good in the study area. The model proposed in this paper provides a new idea for extracting remote sensing alteration information in the future.
:  TP 75  
Issue Date: 03 June 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cite this article:   
ZHANG Nan-nan, ZHOU Ke-fa, CHEN Xi, LI Hong. A Comparative Study of Extraction Methods for Alteration Information Based on ETM+[J]. REMOTE SENSING FOR LAND & RESOURCES,2012, 24(2): 34-40.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.02.07     OR     https://www.gtzyyg.com/EN/Y2012/V24/I2/34
[1] 赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003:5-35.
[2] 周成虎.遥感影像地学理解与分析[M].北京:科学出版社,1999:11-20.
[3] 陈述彭,童庆禧,郭华东.遥感信息机理研究[M].北京:科学出版社,1998:18-20.
[4] 赵鹏大.定量地学方法及应用[M].北京:高等教育出版社,2004:8-22.
[5] 陈淳福,梁有彬.内生金矿床围岩蚀变及其找矿意义[J].地质找矿论丛,1999,5(3):63-70.
[6] Abrams M J.Landsat-4 Thermatic Mapper and Thematic Mapper Simulator Data for a Porphyry Copper Deposit[J].Photogrammetric Engineering and Remote Sensing,1984,50(8):1171-1173.
[7] Loughlin W P.Principal Component Analysis for Alteration Mapping[J].Photogrammetric Engineering and Remote Sensing,1991,57(9):163-1169.
[8] Rokos D,Argialas R,Mavrantza,et al.Structural Analysis for Gold Mineralization Using Remote Sensing and Geochemical Techniques in a GIS Environment:Island of Lesvos,Hellas[J].Natural Resources Research,2000,9(4):277-293.
[9] Kusky T M,Talaat M R.Structural Controls on Neoproterozoic Mineralization in the South Eastern Desert,Egypt:an Integrated Field,Landsat TM,and SIR-C/X SAR Approach[J].Journal of African Earth Sciences,2002,35(1):107-121.
[10] Tommasoa I D,Rubinstein N.Hydrothermal Alteration Mapping Using ASTER Data in the Infiernillo Porphyry Deposit,Argentina[J].Ore Geology Reviews,2007,32(1-2):275-290.
[11] 刘燕君.矿产信息的遥感地面模式[M].北京:地质出版社,1993:25-50.
[12] 赵元洪,张福祥,陈南峰.波段比值的主成份复合在热液蚀变信息提取中的应用[J].国土资源遥感,1991(3):12-18.
[13] 马建文.利用TM数据快速提取含矿蚀变带方法研究[J].遥感学报,1997,1(3):208-213.
[14] 刘素红,马建文,蔺启忠.通过Gram-Schmidt投影方法在高山区提取TM数据中含矿蚀变带信息[J].地质与勘探,2000,36(5):62-65.
[15] 张玉君,杨建民,陈微.ETM+(TM)蚀变遥感异常提取方法研究与应用——地质依据和波谱前提[J].国土资源遥感,2002(4):30-37.
[16] 张玉君,曾朝铭,陈微.ETM+(TM)蚀变遥感异常提取方法研究与应用——方法选择和技术流程[J].国土资源遥感,2003(2):44-49.
[17] 洪金益,姚学恒,潘东.基于SVM遥感图像矿化信息提取试验[J].矿业研究与开发,2004,24(5):63-65.
[18] 耿新霞,杨建明,姚佛军,等.新疆阿巴宫铅锌矿遥感找矿信息提取及地化多元信息综合分析[J].地质与勘探,2011,46(5):942-952.
[19] 刁海,张达,狄永军,等.基于主成分分析和分形模型的ASTER蚀变异常信息提取[J].国土资源遥感,2011(2):75-80.
[20] 邓吉秋,谢杨,张宝一,等.ETM+图像锰矿化蚀变信息提取与找矿预测[J].国土资源遥感,2011(1):102-105.
[21] 平仲良.从陆地卫星TM数据提取胶东某地区某种类型金矿的围岩蚀变信息[J].国土资源遥感,1993(4):42-45
[22] 张满郎.金矿化蚀变信息提取中的主成分分析[J].遥感技术与应用,1996,11(3):1-6.
[23] 刘庆生,燕守勋,马超飞,等.内蒙哈达门沟金矿区山前钾化带遥感信息提取[J].遥感技术与应用,1999,14(3):7-11.
[24] 李培军,龙玄耀,刘立.基于ASTER数据的蛇绿岩组分识别:以德尔尼矿区为例[J].岩石学报,2007,23(5):1175-1180.
[25] 吕凤军,郝跃生,石静,等.ASTER遥感数据蚀变遥感异常提取研究[J].地球学报,2009,30(2):271-276.
[26] 张远飞,袁继明,朱谷昌,等.基于遥感数据随机模型的空间结构分与蚀变信息提取[J].国土资源遥感,2010(4):34-39.
[27] 程知言,赵培松.云南播卡金矿遥感蚀变信息提取及成矿预测[J].国土资源遥感,2011(2):135-140.
[28] Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995:18-78.
[29] Vapnik V N.统计学习理论的本质[M].张学工,译.北京:清华大学出版社,2000:5-35.
[30] 边肇琪.模式识别[M].北京:清华大学出版社,2001:10-45.
[31] Joachims T.Text Categorization with Support Vector Machines:Learning with Many Relevant Features[C]//Proceedings of ECML-98,10th European Conference on Machine Learning.1998:1225-1235.
[32] Zien A,Rïtsch G,Mika S,et al.Engineering Support Vector Machine Kernels that Recognize Translation Initiation Sites[C]//Proceedings of the 24th Annual International Conference on Machine Learning.Oxford:Oxford University Press,2000:799-807.
[33] 卢增祥,李衍达.交互支持向量机学习算法及其应用[J].清华大学学报:自然科学版,1999,39(7):93-97.
[34] 凌旭峰,杨杰,叶晨洲.基于支撑向量机的人脸识别技术[J].红外与激光工程,2002,30(5):318-327.
[35] 刘鹏鹦.新疆哈图金矿地质地球化学特征及其成矿作用[J].黄金,1995,16(9):2-6.
[36] 魏少妮,朱永峰.新疆包古图中酸性岩浆侵位的P-T-fO2条件及岩体地球化学研究[J].地质学报,2010,84(7):1017-1029.
[37] 李华芹,陈富文,蔡红.新疆西准噶尔地区不同类型金矿床Rb-Sr同位素年代研究[J].地质学报,2000,74(2):181-191.
[38] 王冶华,张慧玉,王科强,等.ETM图像数据中矿化蚀变信息的提取——以新疆哈图地区为例[J].黄金,2009,30(2):6-9.
[39] 朱亮璞.遥感地质学[M].北京:地质出版社,1999:25-78.
[40] 刘志杰,韩先菊,刘荫椿.比值-特征主成分混合分析提取金矿蚀变信息——以赣南遂川地区为例[J].黄金地质,1999,4(1):74-77.
[41] 李玉珍,王宜怀.主成分分析及算法[J].苏州大学学报:自然科学版,2005,21(1):32-36.
[42] Crósta A P,Moore J M.Enhancement of Landsat Thematic Mapper Imagery for Residual Soil Mapping in SW Minas Gerais[C]//Proceedings of the 7th (ERIM)Thematic conference:Remote Sensing for Exploration Geology.Calgar,1989:225-255.
[43] 安斌,陈书海,严卫东.SAM法在多光谱图像分类中的应用[J].中国体视学与图像分析,2005,10(1):55-60.
[44] Vapnik V N.Statistical Learning Theory[M].New York:Wiley,1998:3-55.
[1] ZHANG Yunsheng, ZOU Zhengrong. Automatic registration method for remote sensing images based on improved ORB algorithm[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 20-24.
[2] CAI Hongyue, YAO Guoqing. Optimized method for road extraction from high resolution remote sensing image based on watershed algorithm[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 25-29.
[3] DIAN Yuanyong, FANG Shenghui. Simulation analysis of vegetation TOA reflectance based on coupled leaf-canopy-atmosphere radiative transfer model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 30-37.
[4] PAN Peifen, YANG Wunian, DAI Xiaoai. Vegetation moisture content model based on principal component analysis[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 38-42.
[5] LI Xue, SHU Ning, LIU Xiaoli, LI Jinggang. The change detection method based on object-oriented characteristic mapping pattern analysis[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 51-55.
[6] YANG Dehe, CHEN Yijin, YANG Xi, LYU Jingguo, ZHANG Zixin, ZHANG Shuai. Automatic registration of multi-source images for extraction of earthquake damage information[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 56-60.
[7] LI Feng, CUI Ximin, YUAN Debao, WANG Qiang, WU Yajun. Extraction of the building region from airborne LiDAR point clouds under complex urban conditions[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 85-89.
[8] LI Guanghui, WANG Cheng, XI Xiaohuan, ZHENG Zhaojun, LUO Shezhou, YUE Cairong. Extraction of glacier snowline based on airborne LiDAR and hyperspectral data fusion[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 79-84.
[9] MA Lichun, YANG Renzhong, SHI Lu. Improvement and implementation of Forman phase correction algorithm[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 97-101.
[10] WANG Xun, LIU Shujie, ZHANG Xiaowei, HAO Lizhuang, ZHAO Yueping, WANG Wanbang. Alpine grassland nutrition dynamic monitoring using HJ-1A/1B data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 183-188.
[11] HE Hai-qing. A Rapid Sub-pixel Corners Detection Method for UAV Image Based on Image Block[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 21-25.
[12] LIU Bin, SUN Xi-liang, DI Kai-chang, LIU Zhao-qin. Accuracy Analysis and Validation of ZY-3’s Sensor Corrected Products[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 36-40.
[13] HU Bo, ZHU Gu-chang, ZHANG Yuan-fei, LENG Chao. Method for Extraction of Remote Sensing Information Based on Gaussian Mixture Model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 41-47.
[14] QIN Yan, DENG Ru-ru, HE Ying-qing, CHEN Lei, CHEN Qi-dong, XIONG Shou-ping. Algorithm for Removing Thick Clouds in TM Image Based on Spectral and Geometric Information[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 55-61.
[15] LI Chao, WANG Xin-yuan, LUO Lei, JI Wei. Automatic Detection of Lunar Elliptical Craters from Apollo Image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 71-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech