Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2013, Vol. 25 Issue (3) : 38-42     DOI: 10.6046/gtzyyg.2013.03.07
Technology and Methodology |
Vegetation moisture content model based on principal component analysis
PAN Peifen, YANG Wunian, DAI Xiaoai
Key Laboratory of Geo-spatial Information Technology Ministry of Land and Resources, Chengdu University of Technology, Chengdu 610059, China
Download: PDF(785 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In this paper, hyperspectral remote sensing technology was applied to the quantitative study of the relationship between the reflectance spectra of vegetation and vegetation moisture content, and reliable data were obtained for the study of vegetation water content as one of the "Eco-water" information parameters. Sensitive bands were extracted by relevance analysis and stepwise regression of the reflectance spectra and the moisture content of palm leaves collected in the sampling points. In avoidance of the interaction of sensitive bands, the relationship between principal constituents and moisture content was identified as a transition in the first place by extracting principal constituents using principal component analysis, the regression equation of every principal component and standard variables was established, the equation of regression between every standard variable and original variables was also established and, finally, the model of the relationship between vegetation moisture content and reflectance spectra was obtained from translating the transition model. The results showed that the reflectance spectra of palm leaves had significant correlation with vegetation water content at 454 nm, 668 nm,1 466 nm,1 664 nm and 1 924 nm, and that the relative correlation between the predicted values obtained in the niche model and the monitoring values was 0.92, with the root mean square error being 0.06.

Keywords coal mine      dust pollution      Wansheng      hyperspectral     
:  TP 75  
  Q149  
Issue Date: 03 July 2013
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TAN Dejun
XIE Jutian
JIAN Ji
XIE Hongbin
LUO Zhenfu
HU Yunhai
Cite this article:   
TAN Dejun,XIE Jutian,JIAN Ji, et al. Vegetation moisture content model based on principal component analysis[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 38-42.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2013.03.07     OR     https://www.gtzyyg.com/EN/Y2013/V25/I3/38

[1] 费鲜芸,张志国,卢霞,等.麻栎叶片含水率与水分指数关系分析[J].林业资源管理,2010(5):55-60. Fei X Y,Zhang Z G,Lu X,et al.The relationship between sawtooth oak leave WI and FMC[J].Forest Resources Management,2010(5):55-60.



[2] 蒋金豹,黄文江,陈云浩.用冠层光谱比值指数反演条锈病胁迫下的小麦含水量[J].光谱学与光谱分析,2010,30(7):1939-1943. Jiang J B,Huang W J,Chen Y H,et al.Using canopy hyperspectral ratio index to retrieve relative water content of wheat under yellow rust stress[J].Spectroscopy and Spectral Analysis,2010,30(7):1939-1943.



[3] 李玉霞,杨武年,童玲,等.基于光谱指数法的植被含水量遥感定量监测及分析[J].光学学报,2009,29(5):1403-1407. Li Y X,Yang W N,Tong L,et al.Remote sensing quantitative monitoring and analysis of fuel moisture content based on spectral index[J].Acta Optica Sinica,2009,29(5):1403-1407.



[4] 王洁,徐瑞松,马跃良,等.植被含水量的遥感反演方法及研究进展[J].遥感信息,2008(1):100-106. Wang J,Xu R S,Ma Y L,et al.Methods and research developments for retrival of vegetable water content by remote sensing[J].Remote Sensing Information,2008(1):100-106.



[5] 王志辉,丁丽霞.基于叶片高光谱特性分析的树种识别[J].光谱学与光谱分析,2010,30(7):1825-1829. Wang Z H,Ding L X.Tree species discrimination based on leaf level hyperspectral characteristic analysis[J].Spectroscopy and Spectral Analysis,2010,30(7):1825-1829.



[6] 王娟,郑国清.夏玉米冠层反射光谱与植株水分状况的关系[J].玉米科学,2010,18(5):86-89,95. Wang J,Zheng G Q.Relationships between canopy reflectance and plant water status of summer maize[J].Journal of Maize Scences,2010,18(5):86-89,95.



[7] 毛罕平,张晓东,李雪,等.基于光谱反射特征葡萄叶片含水率模型的建立[J].江苏大学学报:自然科学版,2008,29(5):369-372. Mao H P,Zhang X D,Li X,et al.Model establishment for grape leaves dry-basis moisture content based on spectral signature[J].Journal of Jiangsu University:Natural Science Edition,2008,29(5):369-372.



[8] 沈艳,牛铮,王汶,等.基于导数光谱变量叶片含水量模型的建立[J].地理与地理信息科学,2005,21(4):16-19. Shen Y,Niu Z,Wang W,et al.Establishment of leaf water content models based on derivative spectrum variables[J].Geography and Geo-information Science,2005,21(4):16-19.



[9] 张莲蓬,柳钦火,王德高,等.高光谱遥感植被指数的普适性分析[J].测绘通报,2010,56(9):1-4. Zhang L P,Liu Q H,Wang D G,et al.The universal analysis of vegetation indices for hyperspectral remote sensing data[J].Bulletin of Surveying and Mapping,2010,56(9):1-4.



[10] 赵祥,王锦地,刘素红.耦合辐射传输模型的植被含水量遥感改进监测[J].红外与毫米波学报,2010,29(3):185-190. Zhao X,Wang J D,Liu S H.Modified monitoring method of vegetation water content based on coupled radiative transfer model[J]. Journal of Infrared and Millimeter Waves,2010,29(3):185-190.



[11] 陈云浩,蒋金豹,黄文江,等.主成分分析法与植被指数经验方法估测冬小麦条锈病严重度的对比研究[J].光谱学与光谱分析,2009,29(8):2161-2165. Chen Y H,Jiang J B,Huang W J,et al.Comparison of principal component analysis with VI empirical approach for estimating severity of yellow rust of winter wheat[J].Spectroscopy and Spectral Analysis,2009,29(8):2161-2165.



[12] 万新南,杨武年,吴炳方,等."生态水层与生态水"概念及研究意义[J].地球科学进展,2004,19(s1):117-121. Wan X N,Yang W N,Wu B F,et al.Conception of eco-water sphere and its application[J].Advance in Earth Sciences,2004,19(s1):117-121.



[13] 杨武年,简季,李玉霞,等.生态水遥感定量研究[J].成都理工大学学报:自然科学版,2008,49(2):219. Yang W N,Jian J,Li Y X,et al.Quantitative investigation of eco-water with remote sensing[J].Journal of Chengdu University of Technology:Science and Technology Edition,2008,49(2):219.



[14] 赵钊,李霞,尹业彪,等.荒漠植物含水量的光谱特征分析[J].光谱学与光谱分析,2010,30(9):2500-2503. Zhao Z,Li X,Yin Y B,et al.Analysis of spectral features based on water content of desert vegetation[J].Spectroscopy and Spectral Analysis,2010,30(9):2500-2503.



[15] 刘家雄.主成分分析与聚类分析在土壤分类中的应用[J].上海农业学报,2011,27(3):110-113. Liu J X.Application of principal component analysis and cluster analysis to classification of ancient tree-growing soils[J].Acta Agriculturae Shanghai,2011,27(3):110-113.

[1] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[2] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[3] CHEN Jie, ZHANG Lifu, ZHANG Linshan, ZHANG Hongming, TONG Qingxi. Research progress on online monitoring technologies of water quality parameters based on ultraviolet-visible spectra[J]. Remote Sensing for Natural Resources, 2021, 33(4): 1-9.
[4] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[5] SHA Yonglian, WANG Xiaowen, LIU Guoxiang, ZHANG Rui, ZHANG Bo. SBAS-InSAR-based monitoring and inversion of surface subsidence of the Shadunzi Coal Mine in Hami City, Xinjiang[J]. Remote Sensing for Natural Resources, 2021, 33(3): 194-201.
[6] JIANG Yanan, ZHANG Xin, ZHANG Chunlei, ZHONG Chengcheng, ZHAO Junfang. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
[7] ZANG Chuankai, SHEN Fang, YANG Zhengdong. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53.
[8] WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3): 63-71.
[9] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[10] SHU Huiqin, FANG Junyong, LU Peng, GU Wanfa, WANG Xiao, ZHANG Xiaohong, LIU Xue, DING Lanpo. Research on fine recognition of site spatial archaeology based on multisource high-resolution data[J]. Remote Sensing for Land & Resources, 2021, 33(2): 162-171.
[11] XIAO Yan, XIN Hongbo, WANG Bin, CUI Li, JIANG Qigang. Hyperspectral estimation of black soil organic matter content based on wavelet transform and successive projections algorithm[J]. Remote Sensing for Land & Resources, 2021, 33(2): 33-39.
[12] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
[13] HAN Yanling, CUI Pengxia, YANG Shuhu, LIU Yekun, WANG Jing, ZHANG Yun. Classification of hyperspectral image based on feature fusion of residual network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 11-19.
[14] WU Qian, JIANG Qigang, SHI Pengfei, ZHANG Lili. The estimation of soil calcium carbonate content based on Hyperspectral data[J]. Remote Sensing for Land & Resources, 2021, 33(1): 138-144.
[15] GAO Junhua, LIU Shasha, YANG Jinzhong, ZHAO Mingpeng, LIU Xinyue, ZOU Lianxue. Gray correlation evaluation of geological environment in the open-pit coal mine concentration area based on remote sensing:A case study of the Zhungeer Coalfield[J]. Remote Sensing for Land & Resources, 2021, 33(1): 183-190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech