Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (4) : 71-75     DOI: 10.6046/gtzyyg.2012.04.12
Technology and Methodology |
Automatic Detection of Lunar Elliptical Craters from Apollo Image
LI Chao1,2, WANG Xin-yuan1, LUO Lei1,2, JI Wei1
1. Center for Earth Observation and Digital Earth,Chinese Academy of Sciences, Beijing 100094, China;
2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(3472 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Impact crater is the major geomorphologic unit of the lunar surface. Its shape and distribution characteristics can provide a large amount of information about the impact history and the lunar evolution process. In this paper,based on the real shape of craters, the authors proposed an automatic extraction method of elliptical craters. The method consists of three steps: image preprocessing, edge detection and ellipse fitting. The last step uses principal component analysis (PCA) of local interesting parameters and Hough transform to derive multiple ellipses. The total accuracy based on a comparison with manually-derived result is over 76%, with the result of larger craters even in excess of 83%. Statistics of the size-frequency distributions of the craters show that, when the length of the long half axis (D) is smaller than 160 meters, the crater number N and D-3.8 has a significant linear relationship.
Keywords farmland      classification update      grade      Qilihe     
: 

TP 751.1

 
Issue Date: 13 November 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FU Tian-xin
YAN Hao-wen
LUO Cheng-feng
SHA Yu-kun
QIAO Zhan-ming
Cite this article:   
FU Tian-xin,YAN Hao-wen,LUO Cheng-feng, et al. Automatic Detection of Lunar Elliptical Craters from Apollo Image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 71-75.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.04.12     OR     https://www.gtzyyg.com/EN/Y2012/V24/I4/71
[1] Shoemaker E M,Hackman R J,Eggleton R E.Interplanetary Correlation of Geologic Time[J].Adv Astronaut Sci,1962,8:70-89.

[2] Nagumo K,Nakamura A M.Reconsideration of Crater Size-frequency Distribution on the Moon:Effect of Projectile Population and Secondary Craters[J].Adv Space Res,2001,28(8):1181-1186.

[3] Florensky C P,Basilevsky A T,Grebennik N N.The Relationship Between Lunar Crater Morphology and Crater Size[J].Earth,Moon,and Planets,1976,16(1):59-70.

[4] Moore H J,Boyce J M, Hahn D A.Small Impact Craters in the Lunar Regolith:Their Morphologies,Relative Ages,and Rates of Formation[J].The Moon and the Planets,1980,23(2):231-252.

[5] Vinogradova T,Burl M,Mjolsness E.Training of a Crater Detection Algorithm for Mars Crater Imagery[C] //Proceeding of the IEEE Aerospace Conference,2002,7:3201-3211.

[6] Honda R,Iijima Y,Konishi O.Mining of Topographic Feature from Heterogeneous Imagery and Its Application to Lunar Craters[C] //Proceeding of the Progress of Discovery Science London:Springer-Verlag,2002:395-407.

[7] Cheng Y,Johnson A E,Matthies L H,et al.Optical Landmark Detection for Spacecraft Navigation[C] //Proceedings of the 13th AAS/AIAA Space Flight Mechanics Meeting.Ponce,Puerto Rico,2003:203-235.

[8] Kim J R,Muller J P.Impact Crater Detection on Optical Image and DEM.ISPRS WG IV/9:Extraterrestrial Mapping Workshop"Advances in Planetary Mapping 2003"[EB/OL].2003.http://astrogeology.usgs.gov/Projects/ISPRS/MEETINGS/Houston2003/index_houston.html.

[9] Wan C,Cheng W M,Zhou Z P,et al.Automatic Extraction of Lunar Impact Craters from Chang’E-1 Satellite Photographs[J].Science China Physics,Mechanics and Astronomy,2012,55(1):162-169.

[10] Tomasi C,Manduchi R.Bilateral Filtering for Gray and Color Images[C] //Proceedings of the 6th IEEE International Conference on Computer Vision.Bombay:IEEE,1998:839-846.

[11] Canny J.A Computational Approach to Edge Detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):679-698.

[12] 余洪山,王耀南.一种改进型canny边缘检测算法[J].计算机工程与应用,2004,20(1):27-29.

Yu H S,Wang Y N.An Improved Canny Edge Detection Algorithm[J].Computer Engineering and Applications,2004,20(1):27-29(in Chinese with English Abstract).

[13] 冯军华,崔祜涛,崔平远,等.行星表面陨石坑检测与匹配方法[J].航空学报,2010,31(9):1858-1863.

Feng J H,Cui H T,Cui P Y,et al.Autonomous Crater Detection and Matching on Planetary Surface[J].Acta Aeronautica Et Astronautica Sinica,2010,31(9):1858-1863(in Chinese with English Abstract).

[14] Wei Y.Circle Detection Using Improved Dynamic Generalized Hough Transform[C] //Proceedings of IEEE International Geoscience and Remote Sensing Symposium.Seattle,WA:IEEE,1988,2:1190-1192.

[15] Zhang S C,Liu Z Q.A New Algorithm for Real-time Ellipse Detection[C] //Proceedings of IEEE International Conference on Machine Learning and Cybernetics.XI’an,China:IEEE,2003,1:602-607.

[16] Ji Q,Haralick R M.A Statistically Efficient Method for Ellipse Detection[C] //Proceedings of 1999 International Conference on Image Processing.Kobe,Japan:IEEE,1999:730-734.

[17] Kawaguchi T,Nagata R I.Ellipse Detection Using a Genetic Algorithm[C] //Proceedings of the 14th International Conference on Pattern Recognition Brisbane,Qld:IEEE,1998,1:141-145.

[18] Xie Y H,Ji Q.A New Efficient Ellipse Detection Method[C] //Proceedings of the 16th International Conference on Pattern Recognition Quebec,Canada:IEEE,2002:957-960.

[19] Elmowafy O M,Fairhurst M C.Improving Ellipse Detection Using a Fast Graphical Method[J].Electronics Letters,1999,35(2):135-137.

[20] 杨忠根,马彦.使用广义正交概念的K-RANSAC椭圆提取[J].自动化学报,2002,28(4):520-526.

Yang Z G,Ma Y.A New Method for Ellipse Detection Using K-RANSAC Based on Generalized Orthogonality Principle[J].Acta Automatica Sinica,2002,28(4):520-526(in Chinese with English Abstract).

[21] Hough P V C.Method and Means for Recognizing Complex Patterns:US,3969654[P].1962.

[22] 牛晓霞,胡正平,杨苏.局部PCA参数约束的Hough多椭圆分层检测算法[J].计算机应用,2009,29(5):1365-1368.

Niu X X,Hu Z P,Yang S.Hierarchical Ellipse Detection Algorithm Based on Local PCA Hough Transform with Parameter Restraint[J].Journal of Computer Applications,2009,29(5):1365-1368(in Chinese with English Abstract).

[23] Shufelt J,McKewon D M.Fusion of Monocular Cues to Detect Man-made Structures in Serial Imagery[J].Computer Vision and Image Understanding,1993,57(3):307-330.

[24] Crater Analysis Techniques Working Group.Standard Techniques for Presentation and Analysis of Crater Size-frequency Data[J].Icarus,1979,37(2):467-474.

[25] Shoemaker E M.Preliminary Analysis of the Fine Structure of the Lunar Surface in Mare Cognitum[M] //The Nature of the Lunar Surface.Baltimore:Johns Hopkins University Press,1965:23-77.

[26] Ivanov B A.Notes About Secondary Crater SFD[C] //Workshop on Surface Ages and Histories:Issues in Planetary Chronology.LPI Contribution No.1320.Houston:Lunar and Planetary Institute,2006:28-29.

[27] Hartmann W K,Gaskell R W.Planetary Cratering 2:Studies of Saturation Equilibrium[J].Meteorit Planet Sci,1997,32:109-121.

[28] Hartmann W K.Martian Cratering 8:Isochron Refinement and the Chronology of Mars[J].Icarus,2005,174(2):294-320.
[1] LONG Zehao, ZHANG Tianyuan, XU Wei, QIN Qiming. Development of farmland drought remote sensing dynamic monitoring system based on Android[J]. Remote Sensing for Land & Resources, 2021, 33(2): 256-261.
[2] Lijing BU, Xiuwei LI, Zhengpeng ZHANG, Haonan JIANG. Feasibility of conditional generation adversarial network in remote sensing image restoration[J]. Remote Sensing for Land & Resources, 2020, 32(1): 27-34.
[3] Yuqi CHENG, Yuqing WANG, Jingping SUN, Chengfu ZHANG. Temporal and spatial variation of evapotranspiration and grassland vegetation cover in Duolun County, Inner Mongolia[J]. Remote Sensing for Land & Resources, 2020, 32(1): 200-208.
[4] Zhen CHEN, Yunshi ZHANG, Yuanyu ZHANG, Lingling SANG. A study of remote sensing monitoring methods for the high standard farmland[J]. Remote Sensing for Land & Resources, 2019, 31(2): 125-130.
[5] Jian YU, Yunjun YAO, Shaohua ZHAO, Kun JIA, Xiaotong ZHANG, Xiang ZHAO, Liang SUN. Estimating latent heat flux over farmland from Landsat images using the improved METRIC model[J]. Remote Sensing for Land & Resources, 2018, 30(3): 83-88.
[6] Zhongdi YU, Hui LI, Fang BA, Zhaoyang WANG. 3D city model construction based on a consumer-grade UAV[J]. Remote Sensing for Land & Resources, 2018, 30(2): 67-72.
[7] LIU Zhe, QIU Bingwen, WANG Zhuangzhuang, QI Wen. Temporal and spatial variation analysis of vegetation cover in the Loess Plateau from 2001 to 2014[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 192-198.
[8] FU Tian-xin, YAN Hao-wen, LUO Cheng-feng, SHA Yu-kun, QIAO Zhan-ming. Updated Evaluation and Analysis of Farmland Classification in Qilihe District of Lanzhou[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 140-145.
[9] PEI Zhi-Yuan, ZHANG Song-Ling, WU Quan, LIU Hai-Qi. THE TECHNICAL FRAMEWORK FOR REGIONAL FARMLAND CHANGE INVESTIGATION USING REMOTE SENSING[J]. REMOTE SENSING FOR LAND & RESOURCES, 2008, 20(2): 48-50.
[10] XIA Li-Hua, WANG De-Hui, WANG Fang. RESEARCHES ON THE ADVANCED WARNING SYSTEM AND
ADVANCED WARNING GRADE OF THE PHOTOCHEMIC SMOG
POLLUTION IN GUANGZHOU CITY BASED ON MODIS DATA
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(4): 73-76.
[11] PENG Jian-Chao, WU Qun, GUO Guan-Cheng. THE APPLICATION OF ARCINFO 8 TO FARMLAND GRADING:
A CASE STUDY OF JIANGDU CITY
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2005, 17(4): 46-50.
[12] GUO Peng, SUN Yan-ling, BAI Jie, LIU Hong-bin, WU Wei. THE APPLICATION OF DEM TO SLOPING FARMLAND INVESTIGATION[J]. REMOTE SENSING FOR LAND & RESOURCES, 2003, 15(4): 59-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech