Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (3) : 97-102     DOI: 10.6046/gtzyyg.2012.03.18
Technology Application |
Calculation and Reliability Analysis of Satellite Sensors Band Solar Irradiance
HU Shun-shi1, ZHANG Li-fu1, ZHANG Xia1, WANG Qian1, HAN Bing2, ZHANG Nan3
1. State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing Applications Chinese Academy of Sciences, Beijing 100101, China;
2. China University of Mining and Technology, Xuzhou 221116, China;
3. China University of Geosciences, Beijing 100083, China
Download: PDF(2859 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Extraterrestrial Solar Spectral Irradiance (ESSI) is an important parameter for calculating Band Mean Solar Irradiances (BMSI) of different satellites. In order to probe into the problem as to which ESSI dataset could acquire a more accurate BMSI result, the authors selected 4 ESSI datasets, namely SBDART simulated solar spectrum dataset, oldkur.dat dataset from MODTRAN4.0, Thuillier solar spectrum dataset and WRC solar spectrum dataset, to calculate BMSI for HJ-1A CCD1(B1-B4), CBERS-02 CCD(B1-B5), Landsat5 TM(B1-B4) and ASTER (B1-B8).A comparison was made between the calculated BMSI result and the BMSI result published by satellite operators.It is found that the calculated BMSI results using WRC solar spectrum dataset and SBDART dataset have a smaller error in comparison with published BMSI, followed by oldkur.dat, while the calculated BMSI results using Thuillier solar spectrum dataset have larger errors than other datasets.
Keywords target recognition      morphological reconstruction      background suppression      feature matching     
:  TP79  
Issue Date: 20 August 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HOU Yun-feng
YANG Feng-jun
YANG Xiao-yu
WANG Yu-pu
Cite this article:   
HOU Yun-feng,YANG Feng-jun,YANG Xiao-yu, et al. Calculation and Reliability Analysis of Satellite Sensors Band Solar Irradiance[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 97-102.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.03.18     OR     https://www.gtzyyg.com/EN/Y2012/V24/I3/97
[1] 赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003:16-17. Zhao Y S.Principles and Methods of Remote Sensing Applications[M].Beijing:Science Press,2003:16-17(in Chinese).
[2] Ricchiazzi P,Yang S R,Gautier C,et al.SBDART:A Research and Teaching Software Tool for Plane-parallel Radiative Transfer in the Earth’s Atmosphere[J].Bulletin of the American Meteorological Society,1998,79(10):2101-2114(in Chinese with English Abstract).
[3] 潘志强,傅俏燕,张浩平.CBERS-02星CCD波段平均太阳辐照度反演及应用[J].地球信息科学,2008,10(1):109-113. Pan Z Q,Fu Q Y,Zhang H P.Retrieval and Application of Band Mean Solar Irradiance of CBERS-02 CCD[J].Geo-information Science,2008,10(1):109-113(in Chinese with English Abstract).
[4] Thuillier G,Hers é M,Labs D,et al.The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the ATLAS and EURECA Missions[J].Solar Physics,2003,214(1):1-22.
[5] Smith A M S.How to Convert ASTER Radiance Values to Reflectance, An Online Guide[EB/OL].[2011-08-15].http://www.cnrhome.uidaho.edu/default.aspx?pid=85984.
[6] Ricchiazzi P,Yang S R,Gautier C.SBDART:A Practical Tool for Plane-parallel Radiative Transfer in the Earth’s Atmosphere[EB/OL].[2011-08-15].http://arm.mrcsb.com/sbdart/html/sbdart-intro.html.
[7] Ricchiazzi P.SBDART:Tool for Computing Radiative Transfer in the Earth’s Atmosphere[EB/OL].(2007-12-18)[2011-08-15].http://paulschou.com/tools/sbdart/.
[8] Ocean Color Web.Thuillier Solar Irradiance Data[EB/OL].[2011- 08-15].http://oceancolor.gsfc.nasa.gov/DOCS/RSR/Thuillier_F0.dat.
[9] Smith A M S.Extraterrestrial Solar Spectral Irradiance[EB/OL].[2011-08-15].http://staff.aist.go.jp/s.tsuchida/aster/cal/info/solar/solar.txt.
[1] Guangyu ZHOU, Bangquan LIU, Dan ZHANG. Target recognition in SAR images based on variational mode decomposition[J]. Remote Sensing for Land & Resources, 2020, 32(2): 33-39.
[2] Junlin CHEN, Runmin PENG, Yan YAN, Weiguang ZHAO. Extraction of dry drainage system based on independent component analysis and morphological characteristics[J]. Remote Sensing for Land & Resources, 2018, 30(4): 163-170.
[3] GENG Juan, HE Chenglong, LIU Xianxin. UAV image matching based on CSIFT feature[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 93-100.
[4] SONG Zhili. Automatic approach based on point and curve features for multimodal remote sensing image registration[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 48-54.
[5] HOU Yun-feng, YANG Feng-jun, YANG Xiao-yu, WANG Yu-pu. The Method for Target Recognition from Natural Scene Images Based on Morphological Reconstruction[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 11-15.
[6] CHAI Deng-feng, SHU Ning, ZHANG Jian-qing . A STUDY OF THE DYNAMIC DEM MATCHING METHOD[J]. REMOTE SENSING FOR LAND & RESOURCES, 2002, 14(1): 38-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech