Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2015, Vol. 27 Issue (4) : 171-178     DOI: 10.6046/gtzyyg.2015.04.26
|
Relationship between the spatial and temporal distribution of snow depth and the terrain over the Tibetan Plateau
BAI Shuying1,2, WU Qi1, SHI Jianqiao3, GU Haimin4
1. College of Remote Sensing, Nanjing University of Information Science & Technology, Nanjing 210044, China;
2. Nanjing Institute of Environmental Science, Ministry of Environmental Protection, Nanjing 210042, China;
3. Unit 61, No.94783 Troop of PLA, Changxing 313111, China;
4. Meteorological Bureau of Fuling District, Fuling 408000, China
Download: PDF(7725 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Using the daily dataset of snow depth from 1979 to 2010, the authors analyzed the relationship between the spatial and temporal distribution of snow depth and the terrain factors over the Tibetan Plateau by means of Mann-Kendall test and GIS space analysis. According to the results achieved, the distribution of snow depth was significantly affected by topography, the average snow depth was affected mainly by elevation from May to September, whereas in other months it was under the common influence of temperature and elevation. The snow depth amplitude of the same segment elevation reflected the impact of the aspect on snow depth, and the influence was greater when the amplitude was wider. The maximum snow depth kept increasing with the increment of elevation and slope, while the spatial heterogeneity decreased with the increment of elevation but increased with the decrement of slope. From October to May of the next year, the average snow depth at the elevation from 82 to 2 482 meter and 6 082 to 7 682 meter was more affected by slope and aspect than that at the elevation from 2 482 to 6 082 meter. Multiple regression analysis showed that the distribution of snow depth over the Tibetan Plateau was influenced by elevation and slope; furthermore, spatial differences of slope at the elevation of 82~3 282 meter had significant positive effect on the spatial variability of average snow depth; nevertheless, elevation was the main limiting factor of the average snow depth.
Keywords workflow      terrain factor      XML model description      model extraction     
:  TP79  
Issue Date: 23 July 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FU Tianju
XU Yuping
AN Tianlin
QIAO Zhanming
Cite this article:   
FU Tianju,XU Yuping,AN Tianlin, et al. Relationship between the spatial and temporal distribution of snow depth and the terrain over the Tibetan Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 171-178.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2015.04.26     OR     https://www.gtzyyg.com/EN/Y2015/V27/I4/171
[1] 徐兴奎.1970—2000年中国降雪量变化和区域性分布特征[J].冰川冻土, 2011, 33(3):497-503. Xu X K.Spatiotemporal variation and regional distribution characteristics of snowfall in China from 1970 to 2000[J].Journal of Glaciology and Geocryology, 2011, 33(3):497-503.
[2] 纪鹏, 郭华东, 张露.近20年西昆仑地区冰川动态变化遥感研究[J].国土资源遥感, 2013, 25(1):93-98.doi:10.6046/gtzyyg.2013.01.17. Ji P, Guo H D, Zhang L.Remote sensing study of glacier dynamic change in West Kunlun Mountains in the past 20 years[J].Remote Sensing for Land and Resources, 2013, 25(1):93-98.doi:10.6046/gtzyyg.2013.01.17.
[3] 车涛, 李新, 高峰.青藏高原积雪深度和雪水当量的被动微波遥感反演[J].冰川冻土, 2004, 26(3):363-368. Che T, Li X, Gao F.Estimation of snow water equivalent in the Tibetan Plateau using passive microwave remote sensing data(SSM/I)[J].Journal of Glaciology and Geocryology, 2004, 26(3):363- 368.
[4] 张佳华, 吴杨, 姚凤梅.卫星遥感藏北积雪分布及影响因子分析[J].地球物理学报, 2008, 51(4):1013-1021. Zhang J H, Wu Y, Yao F M.Study on the snow distribution and influencing factors in Northern Tibet based on remote sensing information[J].Chinese Journal of Geophysics, 2008, 51(4):1013-1021.
[5] Che T, Li X, Jin R, et al.Snow depth derived from passive microwave remote-sensing data in China[J].Annals of Glaciology, 2008, 49(1):145-154.
[6] 柏延臣, 冯学智, 李新, 等.基于被动微波遥感的青藏高原雪深反演及其结果评价[J].遥感学报, 2001, 5(3):161-165. Bo Y C, Feng X Z, Li X, et al.The retrieval of snow depth in Qinghai_Xizang(Tibet) Plateau from passive microwave remote sensing data and its results assessment[J].Journal of Remote Sensing, 2001, 5(3):161-165.
[7] 车涛, 李新.利用被动微波遥感数据反演我国积雪深度及其精度评价[J].遥感技术与应用, 2004, 19(5):301-306. Che T, Li X.Retrieval of snow depth in China by passive microwave remote sensing data and its accuracy assessment[J].Remote Sensing Technology and Application, 2004, 19(5):301-306.
[8] 车涛.积雪被动微波遥感反演与积雪数据同化方法研究[D].兰州:中国科学院寒区旱区环境与工程研究所, 2006. Che T.Study on Passive Microwave Remote Sensing of Snow and Snow Data Assimilation Method[D].Lanzhou:Cold and Arid Regions Environmental and Engineering Research Institute, 2006.
[9] 白淑英, 史建桥, 沈渭寿, 等.近30年西藏雪深时空变化及其对气候变化的响应[J].国土资源遥感, 2014, 26(1):144-151.doi:10.6046/gtzyyg.2014.01.25. Bai S Y, Shi J Q, Shen W S, et al.Spatial-temporal variation of snow depth in Tibet and its response to climatic change in the past 30 years[J].Remote Sensing for Land and Resources, 2014, 26(1):144-151.doi:10.6046/gtzyyg.2014.01.25.
[10] 韦志刚, 黄荣辉, 陈文.青藏高原冬春积雪年际振荡成因分析[J].冰川冻土, 2005, 27(4):491-497. Wei Z G, Huang R H, Chen W.The causes of the interannual variation of snow cover over the Tibetan Plateau[J].Journal of Glaciology and Geocryology, 2005, 27(4):491-497.
[11] 杨倩, 陈圣波, 路鹏, 等.2000—2010年吉林省积雪时空变化特征及其与气候的关系[J].遥感技术与应用, 2012, 27(3):413-419. Yang Q, Chen S B, Lu P, et al.Spatio-temporal variation of snow cover in Jilin province and its relationships to climate change in recent 10 years[J].Remote Sensing Technology and Application, 2012, 27(3):413-419.
[12] 孙鸿烈.不断攀登探索世界屋脊奥秘[J].中国西藏, 1998(6):46-48. Sun H L.Climbing up and exploring mysteries concerning the roof of world[J].China's Tibet, 1998(6):46-48.
[13] 魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社, 2007. Wei F Y.Modern Climatic Statistical Diagnosis and Prediction Technology[M].Beijing:Meteorological Press, 2007.
[14] 徐宗学, 米艳娇, 李占玲, 等.和田河流域气温与降水量长期变化趋势及其持续性分析[J].资源科学, 2008, 30(12):1833-1838. Xu Z X, Mi Y J, Li Z L, et al.Long-term trends and sustainability analysis of air temperature and prediction in the Hotan river basin[J].Resources Science, 2008, 30(12):1833-1838.
[15] 白淑英, 史建桥, 相栋, 等.近50年青海降水时空格局变化[J].干旱区资源与环境, 2013, 27(6):148-153. Bai S Y, Shi J Q, Xiang D, et al.Spatiotemporal pattern change of precipitation in Qinghai in the last 50 years[J].Journal of Arid Land Resources and Environment, 2013, 27(6):148-153.
[16] 康淑媛, 张勃, 柳景峰, 等.基于Mann-Kendall法的张掖市降水量时空分布规律分析[J].资源科学, 2009, 31(3):501-508. Kang S Y, Zhang B, Liu J F, et al.Analysis of the spatiotemporal distribution of precipitation in Zhangye City using Mann-Kendall method[J].Resources Science, 2009, 31(3):501-508.
[17] 王叶堂, 何勇, 侯书贵.2000—2005年青藏高原积雪时空变化分析[J].冰川冻土, 2007, 29(6):855-861. Wang Y T, He Y, Hou S G.Analysis of the temporal and spatial variations of snow cover over the Tibetan Plateau based on MODIS[J].Journal of Glaciology and Geocryology, 2007, 29(6):855-861.
[1] RAN Quan, LI Guoqing, YU Wenyang, ZHANG Lianchong. Online visual customization and automatic calculation of remote sensing information model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 221-226.
[2] FU Tianju, XU Yuping, AN Tianlin, QIAO Zhanming. Model description and method for procedural extraction of terrain factors[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 62-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech