Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2015, Vol. 27 Issue (4) : 62-67     DOI: 10.6046/gtzyyg.2015.04.10
Technology and Methodology |
Model description and method for procedural extraction of terrain factors
FU Tianju1, XU Yuping1, AN Tianlin2, QIAO Zhanming3
1. Inner Mongolia Electronic Information Vocational Technical College, Hohhot 010070, China;
2. School of Mathematics, Physical and Software Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
3. Qinghai Basic Geographic Information Center, Xining 810001, China
Download: PDF(2108 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The workflow technology was tentatively applied to the terrain factor extraction. The authors chose the extensible markup language (XML) as modeling language to study and model the process of terrain factor extraction. A set of models and modeling methods suitable for terrain factor flow extraction was formed by structured organization and description of the relationship between data transfer, input data, output data, parameters, factor model and driven execution from terrain factor extraction. The model with 5 m×5 m resolution based on traditional terrain factor algorithm automatically extracted terrain factor from DEM data of the experimental area, with good results achieved. At the same time, the river network extraction was conducted to test the terrain factor extraction model. The results show that the model has strong adaptability and scalability.

Keywords vegetation      MODIS NDVI      temperature      precipitation      Circum-Bohai Sea area     
:  TP217  
Issue Date: 23 July 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIANG Shouzhen
YU Dingfeng
WANG Meng
SHI Ping
Cite this article:   
LIANG Shouzhen,YU Dingfeng,WANG Meng, et al. Model description and method for procedural extraction of terrain factors[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 62-67.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2015.04.10     OR     https://www.gtzyyg.com/EN/Y2015/V27/I4/62

[1] 汤国安, 杨昕.ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社, 2006. Tang G A, Yang X.ArcGIS Geographic Information System Spatial Analysis Experiment Tutorial[M].Beijing:Science Press, 2006.

[2] 陈楠, 王钦敏.基于地形因子信息量的数字高程模型分辨率的选择——以黄土高原的研究为例[J].武汉大学学报:信息科学版, 2009, 34(6):692-705. Chen N, Wang Q M.Study of salt marsh vegetation spread dynamics model based on conditions optimized CA[J].Geomatics and Information Science of Wuhan University, 2009, 34(6):692-705.

[3] 陈楠, 林宗坚, 汤国安, 等.数字高程模型的空间信息不确定性分析[J].测绘通报, 2005(11):14-17. Chen N, Lin Z J, Tang G A, et al.Analysis of spatial information uncertainty from DEM[J].Bulletin of Surveying and Mapping, 2005(11):14-17.

[4] 陈楠, 王钦敏, 汤国安.自DEM由不同算法提取坡度的对比分析[J].测绘工程, 2006, 15(1):6-9. Chen N, Wang Q M, Tang G A.A contrast analysis of slopes extracted by different algorithms based on DEM[J].Engineering of Surveying and Mapping, 2006, 15(1):6-9.

[5] 强晓焕, 元昌安.基于DEM的坡度算法分析及精度探讨[J].南昌工程学院学报, 2005, 24(2):41-45. Qiang X H, Yuan C A.Research of algorithms and accuracy for calculating slope based on digital elevation model[J].Journal of Nanchang Institute of Technology, 2005, 24(2):41-45.

[6] 刘学军, 龚健雅, 周启鸣, 等.基于DEM坡度坡向算法精度的分析研究[J].测绘学报, 2004, 33(3):258-263. Liu X J, Gong J Y, Zhou Q M, et al.A study of accuracy and algorithms for calculating slope and aspect based on grid digital elevation model(DEM)[J].Journal of Surveying and Mapping, 2004, 33(3):258-263.

[7] 刘学军, 任志峰, 王彦芳, 等.基于DEM的任意方向坡度计算方法[J].地域研究与开发, 2009, 28(4):139-141. Liu X J, Ren Z F, Wang Y F, et al.Slope model at arbitrary direction derived from grid-based DEM[J].Areal Research and Development, 2009, 28(4):139-141.

[8] 汤国安, 宋佳.基于DEM坡度图制图中坡度分级方法的比较研究[J].水土保持学报, 2006, 20(2)157-160. Tang G A, Song J.Comparison of slope classification methods in slope mapping from DEMs[J].Journal of Soil and Water Conservation, 2006, 20(2):157-160.

[9] 赵牡丹, 汤国安, 陈正江, 等.黄土丘陵沟壑区不同坡度分级系统及地面坡谱对比[J].水土保持通报, 2002, 22(4):33-36. Zhao M D, Tang G A, Chen Z J, et al.Slope classification systems and their slope spectrum in hill and gully area of the loess plateau[J].Bulletin of Soil and Water Conservation, 2002, 22(4):33-36.

[10] Alonso G, Agrawal D, Abbadi E A, et al.Functionality and limitations of current workflow management systems[J].IEEE Expert, 1997, 12(5).

[11] Van Der Aalst W M P.The application of petri nets to workflow management[J].Journal of Circuits Systems and Computers, 1998, 8(1):21-66.

[12] 周建涛, 史美林, 叶新铭.工作流过程建模中的形式化验证技术[J].计算机研究与发展, 2005, 42(1):1-9. Zhou J T, Shi M L, Ye X M.Formal verification techniques in workflow process modeling[J].Journal of Computer Research and Development, 2005, 42(1):1-9.

[13] 罗海滨, 范玉顺, 吴澄.工作流技术综述[J].软件学报, 2000, 11(7):899-907. Luo H B, Fan Y S, Wu C.Overview of workflow technology[J].Journal of Software, 2000, 11(7):899-907.

[14] 汤国安, 李发源, 刘学军.数字高程模型教程[M].北京:科学出版社, 2005. Tang G A, Li F Y, Liu X J.Digital Elevation Model Tutorial[M].Beijing:Science Press, 2005.

[15] 张莹, 王昭顺, 黄河.XML在工作流理论中的应用[J].计算机工程与设计, 2006, 27(18):3501-3503. Zhang Y, Wang Z S, Huang H.Design and application of IVR system in work-flow[J].Computer Engineering and Design, 2006, 27(18):3501-3503.

[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] BO Yingjie, ZENG Yelong, LI Guoqing, CAO Xingwen, YAO Qingxiu. Impacts of floating solar parks on spatial pattern of land surface temperature[J]. Remote Sensing for Natural Resources, 2022, 34(1): 158-168.
[3] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[4] YAO Jinxi, ZHANG Zhi, ZHANG Kun. An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 249-256.
[5] PAN Jianping, XU Yongjie, LI Mingming, HU Yong, WANG Chunxiao. Research and development of automatic detection technologies for changes in vegetation regions based on correlation coefficients and feature analysis[J]. Remote Sensing for Natural Resources, 2022, 34(1): 67-75.
[6] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[7] JIN Chengming, YANG Xingwang, JING Haitao. A RS-based study on changes in fractional vegetation cover in North Shaanxi and their driving factors[J]. Remote Sensing for Natural Resources, 2021, 33(4): 258-264.
[8] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[9] YU Wei, KE Fuyang, CAO Yunchang. Spatial-temporal analysis of drought characteristics of Yunnan Province based on MODIS_TVDI/GNSS_PWV data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 202-210.
[10] LI Yang, YUAN Lin, ZHAO Zhiyuan, ZHANG Jinlei, WANG Xianye, ZHANG Liquan. Inversion of tidal flat topography based on unmanned aerial vehicle low-altitude remote sensing and field surveys[J]. Remote Sensing for Natural Resources, 2021, 33(3): 80-88.
[11] CHEN Hong, GUO Zhaocheng, HE Peng. Spatial and temporal change characteristics of vegetation coverage in Erhai Lake basin during 1988—2018[J]. Remote Sensing for Land & Resources, 2021, 33(2): 116-123.
[12] WU Xia, WANG Zhangjun, FAN Liqin, LI Lei. An applicability analysis of salinization evaluation index based on multispectral remote sensing to soil salinity prediction in Yinbei irrigation area of Ningxia[J]. Remote Sensing for Land & Resources, 2021, 33(2): 124-133.
[13] SONG Chengyun, HU Guangcheng, WANG Yanli, TANG Chao. Downscaling FY-3B soil moisture based on apparent thermal inertia and temperature vegetation index[J]. Remote Sensing for Land & Resources, 2021, 33(2): 20-26.
[14] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[15] YE Wantong, CHEN Yihong, LU Yinhao, Wu Penghai. Spatio-temporal variation of land surface temperature and land cover responses in different seasons in Shengjin Lake wetland during 2000—2019 based on Google Earth Engine[J]. Remote Sensing for Land & Resources, 2021, 33(2): 228-236.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech