Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (1) : 221-226     DOI: 10.6046/gtzyyg.2017.01.33
GIS |
Online visual customization and automatic calculation of remote sensing information model
RAN Quan1,2, LI Guoqing1,3, YU Wenyang1,3, ZHANG Lianchong1,2
1. CAS Key Lab of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Hainan Lab of Earth Observation, Sanya 572023, China
Download: PDF(2266 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

With the increasing access to remote sensing data and the rapid development of network technology, remote sensing data on-line automatic integration of the service demand is growing, and there has been no satisfying online visual and automated computing platform for remote sensing data based on services chain so far. This research is based on B/S architecture and services chain as well as the workflow technology. The authors propose an integrated visual platform to store data, design model, compute model, distribute and display result information all in one stop. And Users can integrate the function from data selection, the model design to achieve model on demand in a friendly visual Web interface. Actually, this research is based on the reusability of remote sensing processing module, the goal is to quickly build and implement the process of remote sensing information models (RSIM),and it is an effective attempt to achieve online automated service for remote sensing image.

Keywords SIFT matching      UAV      infrared image     
:  TP79  
Issue Date: 23 January 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Qian
GAN Zheng
ZHI Xiaodong
LIU Yue
WANG Jianchao
JIN Dingjian
Cite this article:   
LI Qian,GAN Zheng,ZHI Xiaodong, et al. Online visual customization and automatic calculation of remote sensing information model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 221-226.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2017.01.33     OR     https://www.gtzyyg.com/EN/Y2017/V29/I1/221

[1] Zeng Y,Li G Q,Guo L X,et al.An on-demand approach to build reusable,fast-responding spatial data services[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2012,5(6):1665-1677.
[2] 张哲.基于海量遥感数据的集群并行处理技术研究与应用[D].郑州:河南大学,2012. Zhang Z.Parallel Processing Technology Research and Application Based on the Cluster of Massive Remote Sensing Data[D].Zhengzhou:Henan University,2012.
[3] 杨会元,冯钟葵,李山山.基于Web的遥感影像在线分类实现技术研究[J].遥感信息,2015,30(1):101-106. Yang H Y,Feng Z K,Li S S.Implementation of online remote sensing image classification[J].Remote Sensing Information,2015,30(1):101-106.
[4] 孙胜涛.遥感信息模型的层次化模拟和描述方法[J].系统仿真学报,2012,24(9):1831-1834. Sun S T.Hierarchical mapping and description method of remote information model[J].Journal of System Simulation,2012,24(9):1831-1834.
[5] 郑磊,薛勇,罗瑛,等.分布式的遥感信息模型库系统与应用[J].微计算机信息,2008,24(16):259-261. Zheng L,Xue Y,Luo Y,et al.Design of distributed remote sensing model base system and application[J].Microcomputer Information,2008,24(16):259-261.
[6] 仰燕兰,金晓雪,叶桦.ASP.NET AJAX框架研究及其在Web开发中的应用[J].计算机应用与软件,2011,28(6):195-198. Yang Y L,Jin X X,Ye H.On ASP.NET AJAX framework and its application in web development[J].Computer Applications and Software,2011,28(6):195-198.
[7] 王强,李小丽.基于工作流的遥感产品生产可视化定制平台研究[J].计算机时代,2015(2):1-3,6. Wang Q,Li X L.Research of visual customized production platform of remote sensing products based on workflow[J].Computer Era,2015(2):1-3,6.
[8] WfMC.Workflow Management Coalition,Terminology & Glossary[R].Brussels:Workflow Management Coalition,1999.
[9] Talia D.Workflow systems for science:Concepts and tools[J].ISRN Software Engineering,2013,2013:404-525.
[10] von Laszewski G,Hategan M.Java CoG Kit Karajan/GridAnt Workflow Guide[R].Argonne,Illinois,USA:Argonne National Laboratory,2005.
[11] 周江华.面向BOINC的网格工作流中间件的设计与实现[D].武汉:华中科技大学,2009. Zhou J H.The Design and Implementation of the Grid Workflow Middleware for BOINC[D].Wuhan:Huazhong University of Science and Technology,2009.

[1] WU Fang, LI Yu, JIN Dingjian, LI Tianqi, GUO Hua, ZHANG Qijie. Application of 3D information extraction technology of ground obstacles in the flight trajectory planning of UAV airborne geophysical exploration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 286-292.
[2] REN Chaofeng, PU Yuchi, ZHANG Fuqiang. A method for extracting match pairs of UAV images considering geospatial information[J]. Remote Sensing for Natural Resources, 2022, 34(1): 85-92.
[3] ZHAO Xiaowei, HUANG Yang, WANG Yongqiang, CHU Ding. Estimation of maize seedling number based on UAV multispectral data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 106-114.
[4] ZANG Chuankai, SHEN Fang, YANG Zhengdong. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53.
[5] LI Yang, YUAN Lin, ZHAO Zhiyuan, ZHANG Jinlei, WANG Xianye, ZHANG Liquan. Inversion of tidal flat topography based on unmanned aerial vehicle low-altitude remote sensing and field surveys[J]. Remote Sensing for Natural Resources, 2021, 33(3): 80-88.
[6] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[7] BAI Junlong, WANG Zhangqiong, YAN Haitao. A K-means clustering-guided threshold-based approach to classifying UAV remote sensed images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 114-120.
[8] XIA Yan, HUANG Liang, CHEN Pengdi. Tobacco fine extraction from UAV image based on fuzzy-superpixel segmentation algorithm[J]. Remote Sensing for Land & Resources, 2021, 33(1): 115-122.
[9] XIONG Yujiu, ZHAO Shaohua, YAN Chunhua, QIU Gouyu, SUN Hua, WANG Yanlin, QIN Longjun. A comparative study of methods for monitoring and assessing urban green space resources at multiple scales[J]. Remote Sensing for Land & Resources, 2021, 33(1): 54-62.
[10] CAI Xiang, LI Qi, LUO Yan, QI Jiandong. Surface features extraction of mining area image based on object-oriented and deep-learning method[J]. Remote Sensing for Land & Resources, 2021, 33(1): 63-71.
[11] QIN Qiming, CHEN Jin, ZHANG Yongguang, REN Huazhong, WU Zihua, ZHANG Chishan, WU Linsheng, LIU Jianli. A discussion on some frontier directions of quantitative remote sensing[J]. Remote Sensing for Land & Resources, 2020, 32(4): 8-15.
[12] CHEN Pengdi, HUANG Liang, XIA Yan, YU Xiaona, GAO Xiaxia. Detection and recognition of road traffic signs in UAV images based on Mask R-CNN[J]. Remote Sensing for Land & Resources, 2020, 32(4): 61-67.
[13] WANG Wei, WANG Xinsheng, YAO Chan, JIN Tian, WU Jiayu, SU Wei. Estimation of wheat planting density using UAV image[J]. Remote Sensing for Land & Resources, 2020, 32(4): 111-119.
[14] Wu XUE, Ling ZHAO, Ying YU. Robust bundle adjustment for UAV images[J]. Remote Sensing for Land & Resources, 2020, 32(2): 40-45.
[15] Yongquan WANG, Qingquan LI, Chisheng WANG, Jiasong ZHU, Xinyu WANG. Tethered UAVs-based applications in emergency surveying and mapping[J]. Remote Sensing for Land & Resources, 2020, 32(1): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech