Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (1) : 114-121     DOI: 10.6046/gtzyyg.2016.01.17
Technology Application |
Remote sensing investigation of mining subsidence and harmfulness research
WANG Haiqing1,2, NIE Hongfeng1, CHEN Ling1, JING Qingqing1, LI Mengwei2,3, LI Xiaoyang2,4
1. China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China;
2. School of Earth and Resources, China University of Geosciences(Beijing), Beijing 100083, China;
3. Beijing Space View Technology Co., Lta. Beijing 100089, China;
4. Gold Geological Party of CAPF, Yantai 264000, China
Download: PDF(12420 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In this paper, aimed at the study of the hazards caused by the mining subsidence using remote sensing images,according to the research objective,the coal mine ore concentration located in the east of Jining City, Shandong Province of China was chosen as the study area. Multi stage optical remote sensing images and historical data were used, and necessary field survey were supplemented also. The results show that:1The mining subsidence in the study area is very serious. By 2013, at least 25.095 km2 of land was destroyed, 24 villages were forced to move; 2In generally, mining subsidence developed rapidly in the study area. From 2009 to 2013, 4.747 km2 of mining subsidence water area was increased in total, and the growth rate was 23.33%; 3 For a single mining subsidence, it is fierce, fast development, great hazard in the beginning. But after the rapid development, the expansion rate will gradually slow down, and gradually transit to the natural balance; 4Optical remote sensing technique can be used to research and investigation of mining subsidence hazard, and the characteristics such as macroscopic and cheap could make up for the lack of ground survey.

Keywords moon mineralogy mapper (M3)      fully constrained linear-unmixing      Hapke model      Sinus Iridum      mineral abundance inversion     
:  TP79  
Issue Date: 27 November 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Qi
LIU Fujiang
LI Chan
QIAO Le
GUO Zhenhui
CHAI Chunpeng
Cite this article:   
ZHANG Qi,LIU Fujiang,LI Chan, et al. Remote sensing investigation of mining subsidence and harmfulness research[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 114-121.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2016.01.17     OR     https://www.gtzyyg.com/EN/Y2016/V28/I1/114

[1] 阎跃观,戴华阳,王忠武,等.急倾斜多煤层开采地表沉陷分区与围岩破坏机理——以木城涧煤矿大台井为例[J].中国矿业大学学报,2013,42(4):547-553. Yan Y G,Dai H Y,Wang Z W,et al.Ground subsidence zone and surrounding rock failure mechanism due to steep multiple coal seam mining:a case study at Muchenyjian Datai Mine[J].Journal of China University of Mining and Technology,2013,42(4):547-553.

[2] Wu Q Y,Pang J W,Qi S Z,et al.Impacts of coal mining subsidence on the surface landscape in Longkou City,Shandong Province of China[J].Environmental Earth Sciences,2009,59(4):783-791.

[3] 李成尊,聂洪峰,汪劲,等.矿山地质灾害特征遥感研究[J].国土资源遥感,2005,17(1):45-48.doi:10.6046/gtzyyg.2005.01.11. Li C Z,Nie H F,Wang J,et al.A remote sensing study of characteristics of geologicol disasters in a mine[J].Remote Sensing for Land and Resources,2005,17(1):45-48.doi:10.6046/gtzyyg.2005.01.11.

[4] 王晓红,聂洪峰,李成尊,等.不同遥感数据源在矿山开发状况及环境调查中的应用[J].国土资源遥感,2006,18(2):69-71.doi:10.6046/gtzyyg.2006.02.17. Wang X H,Nie H F,Li C Z,et al.The application of characteristics of different remote sensing data sources to the investigation of the mining situation and environment of mines[J].Remote Sensing for Land and Resources,2006,18(2):69-71.doi:10.6046/gtzyyg.2006.02.17.

[5] 王钦军,陈玉,蔺启忠.矿山地面塌陷的高分辨率遥感识别与边界提取[J].国土资源遥感,2011,23(3):113-116.doi:10.6046/gtzyyg.2011.03.20. Wang Q J,Chen Y,Lin Q Z.Surface collapse identification and its boundary extraction using high resolution remote sensing[J].Remote Sensing for Land and Resources,2011,23(3):113-116.doi:10.6046/gtzyyg.2011.03.20.

[6] 姚丹丹,吴侃,何强.基于D-InSAR技术的煤矿区沉陷监测[J].金属矿山,2014,32(11):151-155. Yao D D,Wu K,He Q.Coal mine subsidence monitoring based on D-InSAR technology[J].Metal Mine,2014,32(11):151-155.

[7] 高小六.基于D-InSAR技术的煤矿沉陷监测[J].煤炭技术,2013,32(6):78-80. Gao X L.Coal mine subsidence monitoring based on D-InSAR technology[J].Coal Technology,2013,32(6):78-80.

[8] 王勤发,许少清,王超.万年县老白马煤矿采空塌陷现状调查及预测分析[J].西部探矿工程,2014(6):150-153. Wang Q F,Xu S Q,Wang C.Investigation and forecasting about mining subsidence in Baima coal mine,Wannian Country[J].Mine Exploration of West China,2014(6):150-153.

[9] 王创业,曾祥柱,栾春雪.基于正交试验的锦界煤矿开采沉陷影响因素分析[J].煤炭技术,2015,34(2):1-3. Wang C Y,Zeng X Z,Luan C X.Analysis of mining subsidence movement factors in Jinjie coal mine based on orthogonal experiment design[J].Coal Technology,2015,34(2):1-3.

[10] 迟占国,郭森林.煤矿区工作面开采地表沉陷规律研究[J].煤炭技术,2014,33(12):101-103. Chi Z G,Guo S L.Research on ground subsidence regularity in coal mining area[J].Coal Technology,2014,33(12):101-103.

[11] 杨成奎.大宝山矿山采空区地面塌陷地质灾害预测及其防治措施[J].矿产与地质,2013,27(5):416-420. Yang C K.Geologic hazard forecast and its control measures of exhausted area surface collapse of Dabaoshan mine[J].Mineral Resources and Geology,2013,27(5):416-420.

[12] 王永辉,倪岳晖,周建伟,等.基于概率积分法的横河煤矿巨厚松散层下开采沉陷预测分析[J].地质科技情报,2014,33(4):219-224. Wang Y H,Ni Y H,Zhou J W,et al.Subsidence prediction under thick and loose overburden of Henghe coal mine based on probability integration method[J].Geological Science and Technology Information,2014,33(4):219-224.

[13] 龙四春,杨光锐,王先军.唐洞煤矿沉陷灾害综合预测方法研究[J].大地测量与地球动力学,2014,34(3):104-107. Long S C,Yang G R,Wang X J.A comprehensive method predicting subsidence disaster in Tangdong coal mine[J].Journal of Geodesy and Geodynamics,2014,34(3):104-107.

[14] 赵晓霞,李晶,刘子上,等.矿-粮复合区采煤塌陷损毁耕地分级研究[J].环境科学与技术,2014,37(7):177-181,192. Zhao X X,Li J,Liu Z S,et al.Evaluation of damaged farmland extent in overlapped areas of farmland and coal resources with high phreatic water level[J].Environmental Science and Technology,2014,37(7):177-181,192.

[15] 刘哲荣,燕玲,贺晓,等.采煤沉陷干扰下土壤理化性质的演变——以大柳塔矿采区为例[J].干旱区资源与环境,2014,28(11):133-138. Liu Z R,Yan L,He X,et al.Effects of mining subsidence on physical and chemical properties of soil in the subsided land of the Daliuta Mining Area[J].Journal of Arid Land Resources and Environment,2014,28(11):133-138.

[16] 黄晓娜,李新举,刘宁,等.煤矿塌陷区不同复垦年限土壤颗粒组成分形特征[J].煤炭学报,2014,39(6):1140-1146. Huang X N,Li X J,Liu N,et al.Characteristics of soil particles fractal dimension under different reclamation years in coal mining subsidence[J].Journal of China Coal Society,2014,39(6):1140-1146.

[17] 柴华彬,宋博,刘瑞斌,等.煤矿塌陷区地基稳定性与承载力研究现状分析[J].河南理工大学学报:自然科学版,2014,33(2):173-176. Chai H B,Song B,Liu R B,et al.Research status of foundation bearing capacity in coal mining subsidence area[J].Journal of Henan Polytechnic University:Natural Science,2014,33(2):173-176.

[18] 王海庆,陈玲.山东省济宁市煤矿矿集区地面沉陷现状遥感调查[J].中国地质灾害与防治学报,2011,22(1):87-93. Wang H Q,Chen L.Investigation of current surface subsidence situation using remote sensing images,in Jining coal mine concentration area,Shandong Province[J].The Chinese Journal of Geological Hazard and Control,2011,22(1):87-93.

[19] Wang H Q,Zhou Y J,Chen L,et al.The dynamic monitoring on mining collapsing around Xinglongzhuang coal mine based on remote sensing images[J].Advanced Materials Research,2013,726-731:4625-4630.

[20] Wang H Q.Mining subsidence monitoring around Longgu coal mine based on remote sensing[J].Advanced Materials Research,2014,1010-1012:489-495.

[21] 汪宝存,苗放,晏明星,等.基于遥感技术的开滦煤矿地面塌陷积水动态监测[J].国土资源遥感,2007,19(3):94-97.doi:10.6046/gtzyyg.2007.03.22. Wang B C,Miao F,Yan M X,et al.The dynamic detection of ground collapse water log in the Kailuan coal mine based on the remote sensing technique[J].Remote Sensing for Land and Resources,2007,19(3):94-97.doi:10.6046/gtzyyg.2007.03.22.

[22] 许冬,吴侃.济宁煤矿区地表塌陷积水时空演变[J].辽宁工程技术大学学报:自然科学版,2014,33(10):1307-1311. Xu D,Wu K.Spatial-temporal evolution of collapse waterlogged region in Jining coal mining district[J].Journal of Liaoning Technical University:Natural Science,2014,33(10):1307-1311.

[1] Xiaoying DONG, Weihua LIN, Fujiang LIU, Qi ZHANG, Yuan CHANG. Lunar mineral mapping in Sinus Iridum in consideration of mineral grain sizes[J]. Remote Sensing for Land & Resources, 2018, 30(2): 147-153.
[2] WANG Zhe, ZHAO Zhe, YAN Bokun, YANG Suming. Simulation of bi-directional reflectance on mixed minerals based on Hapke photometric model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 186-191.
[3] ZHANG Qi, LIU Fujiang, LI Chan, QIAO Le, GUO Zhenhui, CHAI Chunpeng. Fully constrained linear-unmixing for inversion of lunar mineral abundance in Sinus Iridum[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 7-14.
[4] XI Xiao-xu, LIU Shao-feng, WU Zhi-yuan, WEI Wei, JIAO Zhong-hu, LI Li. The Interpretation of the Land Form of Sinus Iridum on the Moon Based on the Roughness[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 95-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech