Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (2) : 54-61     DOI: 10.6046/gtzyyg.2016.02.09
Technology and Methodology |
Evaluation of methods for deriving mountain glacier velocities with ALOS PALSAR images:A case study of Skyang glacier in central Karakoram
WANG Sisheng1,2,3, JIANG Liming1, SUN Yongling1,2, LIU Lin1,2, SUN Yafei1,2, WANG Hansheng1
1. State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Xi'an Geotechnical Investigation and Surveying Mapping Institute, Xi'an 710054, China
Download: PDF(5902 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Glacier surface velocity is one of the key parameters of glacier dynamics and mass balance. Synthetic aperture radar (SAR) image is an important data source to derive the glacier surface velocity. Now, methods for estimating glacier velocities mainly include Differential Interferometric techniques (D-InSAR), Multiple Aperture InSAR (MAI) and offset tracking. Among them, MAI is a new InSAR technology to overcome the drawback of D-InSAR which is not sensitive to radar azimuth (along-track) deformation. In this study, two ALOS PALSAR L band images which acquired 46 days apart were selected to derive glacier surface velocities of Skyang glacier in the central Karakoram based on the above three methods. In addition, the applications and limitations of the three methods in detecting glacier surface velocities are discussed. The results show that D-InSAR and MAI methods accurately detect displacements in range and azimuth direction respectively, but they all require high coherence. However, in areas of low coherence, offset tracking method achieves more reliable results; moreover, it can obtain two-dimensional glacier velocity field in both range and azimuth direction. Nevertheless, it is limited in the areas which lack feature points.

Keywords mixed ground      same object with different spectra      decision tree classification      Southern hilly areas     
:  TP79  
Issue Date: 14 April 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Yuhui
YAN Meichun
LI Zhijia
YU Qing
CHEN Beibei
Cite this article:   
YANG Yuhui,YAN Meichun,LI Zhijia, et al. Evaluation of methods for deriving mountain glacier velocities with ALOS PALSAR images:A case study of Skyang glacier in central Karakoram[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 54-61.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2016.02.09     OR     https://www.gtzyyg.com/EN/Y2016/V28/I2/54

[1] 李治国.山地冰川变化监测研究综述[J].国土与自然资源研究,2012(2):94-96. Li Z G.Review of mountain glaciers monitoring[J].Territory and Natural Resources Study,2012(2):94-96.

[2] David G V,Josefino C C.Observation:Cryosphere[M]//IPCC.Climate Change 2013:The Physical Science Basis.Contribution of Working GroupⅠto the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge:Cambridge University Press,2013.

[3] 黄磊,李震.光学遥感影像的山地冰川运动速度分析方法[J].冰川冻土,2009,31(5):935-940. Huang L,Li Z.Mountain glacier flow velocities analyzed from satellite optical images[J].Journal of Glaciology and Geocryology,2009,31(5):935-940.

[4] Goldstein R M,Engelhardt H,Kamb B,et al.Satellite radar interferometry for monitoring ice sheet motion:Application to an Antarctic ice stream[J].Science,1993,262(5139):1525-1530.

[5] Kenyi L W,Kaufmann V.Measuring rock glacier surface deformation using SAR interferometry[C]//Eighth International Conference on Permafrost.Zürich,2003,1:537-541.

[6] Joughin I,Smith B E,Abdalati W.Glaciological advances made with interferometric synthetic aperture radar[J].Journal of Glaciology,2010,56(200):1026-1042.

[7] 李佳.利用SAR技术监测天山托木尔峰区冰川运动[D].长沙:中南大学,2012. Li J.Deriving Surface Motion of Mountain Glaciers in Tian Shan from PLASAR Images[D].Changsha:Central South University,2012.

[8] Bechor N B,Zebker H A.Measuring two-dimensional movements using a single InSAR pair[J].Geophysical Research Letters,2006,33(16):L16311.

[9] Gourmelen N,Kim S W,Shepherd A,et al.Ice velocity determined using conventional and multiple-aperture InSAR[J].Earth and Planetary Science Letters,2011,307(1/2):156-160.

[10] Hu J,Li Z W,Li J,et al.3-D movement mapping of the alpine glacier in Qinghai-Tibetan plateau by integrating D-InSAR,MAI and offset-tracking:Case study of the Dongkemadi glacier[J].Global and Planetary Change,2014,118:62-68.

[11] Bolch T,Buchroithner M,Pieczonka T,et al.Planimetric and volumetric glacier changes in the Khumbu Himal,Nepal,since 1962 using Corona,landsat TM and ASTER data[J].Journal of Glaciology,2008,54(187):592-600.

[12] Rignot E,Mouginot J,Scheuchl B.Ice flow of the Antarctic ice sheet[J].Science,2011,333(6048):1427-1430.

[13] Bindschadler R,Vornberger P,Blankenship D,et al.Surface velocity and mass balance of ice streams D and E,West Antarctica[J].Journal of Glaciology,1996,42(142):461-475.

[14] Strozzi T,Luckman A,Murray T,et al.Glacier motion estimation using SAR offset-tracking procedures[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2384-2391.

[15] Copland L,Pope S,Bishop M P,et al.Glacier velocities across the central Karakoram[J].Annals of Glaciology,2009,50(52):41-49.

[16] 蒋宗立,刘时银,许君利,等.应用SAR特征匹配方法估计音苏盖提冰川表面流速[J].冰川冻土,2011,33(3):512-518. Jiang Z L,Liu S Y,Xu J L,et al.Using feature-tracking of ALOS PALSAR images to acquire the Yengisogat glacier surface velocities[J].Journal of Glaciology and Geocryology,2011,33(3):512-518.

[17] Kimura H,Yamaguchi Y.Detection of landslide areas using satellite radar interferometry[J].Photogrammetric Engineering and Remote Sensing,2000,66(3):337-344.

[18] 周建民,李震,李新武.基于ALOS/PALSAR数据雷达干涉测量的中国西部山谷冰川冰流运动规律研究[J].测绘学报,2009,38(4):341-347. Zhou J M,Li Z,Li X W.Research on rules of the valley glacier motion in western China based on ALOS/PALSAR interferornetry[J].Acta Geodaetica et Cartographica Sinica,2009,38(4):341-347.

[19] 刘毅.基于光学遥感影像特征匹配的南极冰川流速测量方法研究[D].上海:同济大学,2014. Liu Y.Method for Glacier Velocity Measurement in Antarctic Based on Feature Matching of Remote Sensing Images[D].Shanghai:Tongji University,2014.

[20] Heid T,Kääb A.Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery[J].Remote Sensing of Environment,2012,118:339-355.

[21] 张祥松.喀喇昆仑山音苏盖提冰川及其邻近冰川的近期变化[J].冰川冻土,1980,2(3):12-16. Zhang X S.Recent variations of the Insukati glacier and adjacent glaciers in the Karaoram Mountains[J].Journal of Glaciology and Geocryology,1980,2(3):12-16.

[22] Ruan Z X,Guo H D,Liu G D,et al.Glacier surface velocity estimation in the west Kunlun mountain range from L-band ALOS/PALSAR images using modified synthetic aperture radar offset-tracking procedure[J].Journal of Applied Remote Sensing,2014,8(1):084595.

[23] Li J,Li Z W,Ding X L,et al.Investigating mountain glacier motion with the method of SAR intensity-tracking:Removal of topographic effects and analysis of the dynamic patterns[J].Earth-Science Reviews,2014,138:179-195.

[24] Quincey D J,Copland L,Mayer C,et al.Ice velocity and climate variations for Baltoro glacier,Pakistan[J].Journal of Glaciology,2009,55(194):1061-1071.

[1] Xianyu GUO, Kun LI, Zhiyong WANG, Hongyu LI, Zhi YANG. Fine classification of rice with multi-temporal compact polarimetric SAR based on SVM+SFS strategy[J]. Remote Sensing for Land & Resources, 2018, 30(4): 20-27.
[2] WANG Jinjie, DING Jianli, ZHANG Cheng, CHEN Wenqian. Method of water information extraction by improved SWI based on GF-1 satellite image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 29-35.
[3] YANG Yuhui, YAN Meichun, LI Zhijia, YU Qing, CHEN Beibei. Classification model for "same subject with different spectra" on complicated surface in Southern hilly areas[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 79-83.
[4] WAN Jianhua, LI Mei, REN Guangbo, MA Yi. Efficient method for updating coastal wetland map based on change detection technology[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 85-90.
[5] SUN Ming, SHEN Wei-shou, XIE Min, LI Hai-dong, GAO Fei. The Identification of Grassland Types in the Source Region of the Yarlung Zangbo River Based on Spectral Features[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 83-89.
[6] WANG Xun, XU Dan-Dan, LI Wen-Long. IMAGE EXTRACTION OF MAQU WETLANDS AND ACCURACY ANALYSIS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(4): 96-100.
[7] YANG Qiang, ZHANG Zhi. THE REMOTE SENSING EXTRACTION METHOD FOR
THE MINING AREA AND THE SOLID WASTE IN THE
BAOKANG PHOSPHORITE ORE DISTRICT, HUBEI PROVINCE
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(2): 87-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech