Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (1) : 83-89     DOI: 10.6046/gtzyyg.2012.01.15
Technology Application |
The Identification of Grassland Types in the Source Region of the Yarlung Zangbo River Based on Spectral Features
SUN Ming1,2, SHEN Wei-shou1, XIE Min3, LI Hai-dong1, GAO Fei4
1. Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China;
2. Institute of Meteorological Disaster Mitigation of Guangxi/Remote Sensing Applying and Experiment Base of National Meteorological Satellite Center, Nanning 530022, China;
3. Guangxi Climate Center, Nanning 530022, China;
4. Qinhuai River Hydraulic Management Agency of Jiangsu Province, Nanjing 210001, China
Download: PDF(1765 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  With the Landsat5 TM images of the source region of the Yarlung Zangbo River as the datum source,according to the different features of spectral combination of the grassland,and in combination with the 1:1 000 000 vegetation type map as well as DEM and NDVI data,the authors set up the rules of grass identification and conducted researches on grass recognition based on decision tree classification. Some conclusions have been reached: 1 Due to difference in habitat types,good results of identifying grass can only be achieved by using different spectral combination features; 2 Compared with traditional supervised classification,the decision tree classification based on spectral combination features has higher precision of identification,the overall classification accuracy has been improved by 15.4% and the Kappa coefficient has been increased by 0.225; 3 In the region with elevation ranging from 4 400 m to 5 000 m,the grassland area of Orinus thoroldii is the largest,followed by the mixed meadow of Kobresia humilis and Kobresia pygmaea,and then by the bush of Caragana versicolor and Potentilla fruticos, with Kobresia littledalei having the smallest area.
Keywords road junctions      automatic positioning of road junctions      high spatial resolution      QuickBird image      hough transformation     
:  TP 751.1  
Issue Date: 07 March 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Wei-wei
MAO Zheng-yuan
Cite this article:   
ZHANG Wei-wei,MAO Zheng-yuan. The Identification of Grassland Types in the Source Region of the Yarlung Zangbo River Based on Spectral Features[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 83-89.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.01.15     OR     https://www.gtzyyg.com/EN/Y2012/V24/I1/83
[1] 中国科学院青藏高原综合科学考察队.青藏高原科学考察丛书:西藏植被[M].北京:科学出版社,1988:261,311-313.
[2] 中国科学院青藏高原综合科学考察队.青藏高原科学考察丛书:西藏草原[M].北京:科学出版社,1992:21-23.
[3] 中国科学院青藏高原综合科学考察队.青藏高原科学考察丛书:西藏土壤[M].北京:科学出版社,1985:298.
[4] 中国科学院青藏高原综合科学考察队.青藏高原科学考察丛书:西藏冰川[M].北京:科学出版社,1986:106-107.
[5] 何萍,郭柯,高吉喜,等.雅鲁藏布江源头区的植被及其地理分布特征[J].山地学报,2005,23(3):267-273.
[6] 孙明,沈渭寿,李海东,等.雅鲁藏布江源区风沙化土地演变趋势[J].自然资源学报,2010,25(7):1163-1171.
[7] 杨逸畴.雅鲁藏布江河谷风沙地貌的初步观察[J].中国沙漠,1984,4(3):12-16.
[8] 李辉霞,鄢燕,刘淑珍,等.西藏高原草地退化遥感分析——以藏北高原典型区为例[M].北京:科学出版社,2008:75-99.
[9] 刘雯,骆剑承,沈占锋,等.多尺度植被信息提取模型研究[J].计算机应用研究,2009,26(6):2398-2400.
[10] 朱继蕤,侯宇丹.基于遥感影像的城市植被信息提取研究 [J].仪器仪表与分析监测,2010(1):12-15.
[11] 单捷,岳彩荣. 基于光谱特征 的决策树分类方法研究——以昆明市东北部地区为例[J].西北林学院学报,2010,25(6):222-226.
[12] 常庆瑞,蒋平安,周勇,等.遥感技术导论[M].北京:科学出版社,2004.
[1] Bingxiu YAO, Liang HUANG, Yansong XU. A high resolution remote sensing image segmentation method based on superpixel and graph theory[J]. Remote Sensing for Land & Resources, 2019, 31(3): 72-79.
[2] Baoquan WEI, Anning SUO, Ying LI, Jianhua ZHAO. Research on the application of LBV transformation in domestic ZY-3 satellite images[J]. Remote Sensing for Land & Resources, 2019, 31(3): 87-94.
[3] Xianlei FAN, Hongbo YAN, Ying QU. Comparison and validation of the methods for estimating surface albedo from HJ-1 A/B CCD data[J]. Remote Sensing for Land & Resources, 2019, 31(3): 123-131.
[4] Linlin LIANG, Liming JIANG, Zhiwei ZHOU, Yuxing CHEN, Yafei SUN. Object-oriented classification of unmanned aerial vehicle image for thermal erosion gully boundary extraction[J]. Remote Sensing for Land & Resources, 2019, 31(2): 180-186.
[5] Ye LYU, Xiangyun HU. Road extraction by incremental Markov random field segmentation from high spatial resolution remote sensing images[J]. Remote Sensing for Land & Resources, 2018, 30(3): 76-82.
[6] SUN Na, GAO Zhiqiang, WANG Xiaojing, LUO Zhidong. High-precise extraction for water on the Loess Plateau region from high resolution satellite image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 173-178.
[7] YIN Feng, CAO Liqin, Liang Peng. Application of improved Welsh’s color transfer algorithm to GF-2 image fusion[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 126-131.
[8] SU Tengfei, ZHANG Shengwei, LI Hongyu. Variable scale Mean-Shift based method for cropland segmentation from high spatial resolution remote sensing images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 41-50.
[9] YANG Qingshan, ZHANG Hua. A new method for classification of high spatial resolution remotely sensed imagery based on fusion of shape and spectral information of pixels[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 64-70.
[10] DENG Zeng, LI Dan, KE Yinghai, WU Yanchen, LI Xiaojuan, GONG Huili. An improved SVM algorithm for high spatial resolution remote sensing image classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 12-18.
[11] YAO Huaqin, YANG Shuwen, LIU Zhengjun, YANG Xingwang, LI Yikun. A method of shadow detection for city tall ground objects based on QuickBird images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 51-55.
[12] YU Bo, WANG Li, NIU Zheng. Analysis of built-up land detection in new Beichuan County based on neutrosophic set[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 106-112.
[13] YANG Yetao, WANG Yingying, ZENG Youzhi. Object-based high spatial resolution imagery analysis for landscape pattern extraction[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 46-50.
[14] SONG Yan, FAN Gaojing, ZUO Jia. Adjustment model for remote sensing images with high spatial resolution from multi-sensors[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(2): 21-26.
[15] ZHANG Wei-wei, MAO Zheng-yuan. A New Approach to Automatic Positioning of Road Junctions in High Spatial Resolution Remotely Sensed Imagery[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 13-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech