Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (2) : 48-53     DOI: 10.6046/gtzyyg.2016.02.08
Technology and Methodology |
Analysis of fire disturbed forests scattering characteristics using polarimetric SAR image
QI Shuai1,2, ZHANG Yonghong2, WANG Huiqin3
1. Faculty of Geomatics Lanzhou Jiaotong University, Lanzhou 730070, China;
2. Chinese Academy of Survering and Mapping, Beijing 100830, China;
3. Shanghai M&D Technical Measurement Company Limited, Shanghai 200123, China
Download: PDF(3382 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

So far forest fire monitoring is only confined to single channel polarimetric amplitude data before and after fire or the utilization of the amplitude of the fully polarimetric SAR after fire, and less research have been conducted from the viewpoint of applying change of the scattering mechanism by forest fire to monitoring forest fire by using fully polarimetric SAR. In this paper, the authors analyzed a forest fire that occurred in 2009 in Alaska, used Radarsat-2 fully polarimetric SAR data obtained before and after the fire and, from the aspect of forest fires changing backscatter intensity and changing forest scattering mechanisms, quantitatively analyzed the intensity of each polarization channel, the dominant scattering mechanism and depolarization parameters and gave reasons for each change. The results obtained by the authors show that, for boreal forests after fire, the backscatter intensity increased by 20% in co-pol channels, and cross-pol channel increased slightly, that forest dominant scattering mechanism changed from volume scattering accounting for 59% before the fire to surface scattering accounting for 53% after the fire, and that depolarization of forests was reduced by 45% in comparison with things before fire. These conclusions have reference values for applying multitemporal polarimetric SAR data to mapping forest fire scar or monitoring burn severity.

Keywords earthquake stricken area      Mean Shift      image segmentation      region merging      unmanned aerial vehicle(UAV)image     
:  TP79  
Issue Date: 14 April 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LU Heng
FU Xiao
LIU Chao
GUO Jiawei
GOU Si
LIU Tiegang
Cite this article:   
LU Heng,FU Xiao,LIU Chao, et al. Analysis of fire disturbed forests scattering characteristics using polarimetric SAR image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 48-53.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2016.02.08     OR     https://www.gtzyyg.com/EN/Y2016/V28/I2/48

[1] Kasischke E S,Christensen Jr N L,Stocks B J.Fire,global warming and the carbon balance of boreal forests[J].Ecological Applications,1995,5(2):437-451.

[2] Bourgeau-Chavez L L,Kasischke E S,French N H F.Detection and interpretation of fire-disturbed boreal forest ecosystems in Alaska using spacebarne SAR data[C]//Proceedings of IEEE topical combined optical,microwave,earth and atmosphere sensing.Albuquerque,NM:IEEE,1993:236-239.

[3] 黄燕平,陈劲松.基于SAR数据的森林生物量估测研究进展[J].国土资源遥感,2013,25(3):7-13.doi:10.6046/gtzyyg.2013.03.02. Huang Y P,Chen J S.Advances in the estimation of forest biomass based on SAR data[J].Remote Sensing for Land and Resources,2013,25(3):7-13.doi:10.6046/gtzyyg.2013.03.02.

[4] Kasischke E S,Bourgeau-Chavez L L,French N H F.Observations of variations in ERS-1 SAR image intensity associated with forest fires in Alaska[J].IEEE Transactions on Geoscience and Remote Sensing,1994,32(1):206-210.

[5] Bourgeau-Chavez L L,Kasischke E S,Brunzell S,et al.Mapping fire scars in global boreal forests using imaging radar data[J].International Journal of Remote Sensing,2002,23(20):4211-4234.

[6] Siegert F,Ruecker G.Use of multitemporal ERS-2 SAR images for identification of burned scars in south-east Asian tropical rainforest[J].International Journal of Remote Sensing,2000,21(4):831-837.

[7] Rüecker G,Siegert F.Burn scar mapping and fire damage assessment using ERS-2 SAR images in east Kalimantan,Indonesia[J].International Archives of Photogrammetry and Remote Sensing,2000,15(Part B7):1286-1293.

[8] Goodenough D G,Chen H,Dyk A.Evaluation of Convair-580 and simulated Radarsat-2 polarimetric SAR for forest change detection[C]//Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium.Denver,Colorado,USA:IEEE,2006:1788-1791.

[9] Goodenough D G,Chen H,Richardson A,et al.Mapping fire scars using Radarsat-2 polarimetric SAR data[J].Canadian Journal of Remote Sensing,2011,37(5):500-509.

[10] MacDonald D.Radarsat-2 Product Format Definition[R].Richmond:MDA,2008.

[11] 王庆,曾琪明,廖静娟.基于极化分解的极化特征参数提取与应用[J].国土资源遥感,2012,24(3):103-110.doi:10.6046/gtzyyg.2012.03.19. Wang Q,Zeng Q M,Liao J J.Extraction and application of polarimetric characteristic parameters based on polarimetric decomposition[J].Remote Sensing for Land and Resources,2012,24(3):103-110.doi:10.6046/gtzyyg.2012.03.19.

[12] Yamaguchi Y,Yajima Y,Yamada H.A four-component decomposition of POLSAR images based on the coherency matrix[J].IEEE Geoscience and Remote Sensing Letters,2006,3(3):292-296.

[13] 余海坤.极化SAR目标特征提取及其应用研究[D].徐州:中国矿业大学,2005. Yu H K.Study on the Extraction of Target Characters and Its Application Based on Polarimetric SAR Data[D].Xuzhou:China University of Mining and Technology,2005.

[14] Zhang Y H,Zhang J X,Lu Z,et al.A new numerical method for calculating extrema of received power for polarimetric SAR[J].IEEE Geoscience and Remote Sensing,2009,6(4):666-670.

[15] Wang Y,Kasischke E S,Melack J M,et al.The effects of changes in loblolly pine biomass and soil moisture on ERS-1 SAR backscatter[J].Remote Sensing of Environment,1994,49(1):25-31.

[16] 化国强,肖靖,黄晓军,等.基于全极化SAR数据的玉米后向散射特征分析[J].江苏农业科学,2011,39(3):562-565. Hua G Q,Xiao J,Huang X J,et al.Based on polarimetric SAR data analysis of the backscattering characteristics of maize[J].Jiangsu Agricultural Sciences,2011,39(3):562-565.

[17] 张露,李新武,杜鹤娟,等.玉米作物极化SAR数据模拟[J].遥感学报,2010,14(4):621-636. Zhang L,Li X W,Du H J,et al.Coherent polarimetric SAR simulation of maize[J].Journal of Remote Sensing,2010,14(4):621-636.

[1] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[2] FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 153-161.
[3] Biqing WANG, Wenquan HAN, Chi XU. Winter wheat planting area identification and extraction based on image segmentation and NDVI time series curve classification model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 219-225.
[4] Shicai ZHU, Xiaotong ZHAI, Zongwei WANG. Segmentation of large scale remote sensing image based on Mean Shift[J]. Remote Sensing for Land & Resources, 2020, 32(1): 13-18.
[5] Peiqing LOU, Xiaoyu CHEN, Shutong WANG, Bolin FU, Yongyi HUANG, Tingyuan TANG, Ming LING. Object recognition of karst farming area based on UAV image: A case study of Guilin[J]. Remote Sensing for Land & Resources, 2020, 32(1): 216-223.
[6] Dechao ZHAI, Yanan FAN, Yanan ZHOU. Multi-scale segmentation of satellite imagery by edge-incorporated weighted aggregation[J]. Remote Sensing for Land & Resources, 2019, 31(3): 36-42.
[7] Bingxiu YAO, Liang HUANG, Yansong XU. A high resolution remote sensing image segmentation method based on superpixel and graph theory[J]. Remote Sensing for Land & Resources, 2019, 31(3): 72-79.
[8] Yongmei ZHANG, Haiyan SUN, Yulong XU. An improved multispectral image segmentation method based on super-pixels[J]. Remote Sensing for Land & Resources, 2019, 31(1): 58-64.
[9] Jun YANG, Jianjie PEI. An improved ICM algorithm for remote sensing image segmentation[J]. Remote Sensing for Land & Resources, 2018, 30(3): 18-25.
[10] Runsheng LI, Fanzhi CAO, Wen CAO, Shuxiang WANG. Extracting road networks from high-resolution remote sensing images using multi features and methods[J]. Remote Sensing for Land & Resources, 2018, 30(3): 33-39.
[11] Liang LI, Lei WANG, Kai WANG, Sheng LI. A change detection method for vector map and remote sensing imagery based on object heterogeneity[J]. Remote Sensing for Land & Resources, 2018, 30(1): 30-36.
[12] MA Guorui, MA Yanli, JIANG Manzhen. Combinational color histogram and LBP textural features for remote sensing image segmentation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 32-40.
[13] ZHAO Qingping. Wide-swath SAR ice images segmentation based on Lambert’s law[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 67-71.
[14] ZHU Hongchun, HUANG Wei, LIU Haiying, ZHANG Zhongfang, WANG Bin. Research on object-oriented remote sensing change detection method based on KL divergence[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 46-52.
[15] SU Tengfei, ZHANG Shengwei, LI Hongyu. Segmentation algorithm based on texture feature and region growing for high-resolution remote sensing image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 72-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech