Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (2) : 132-137     DOI: 10.6046/gtzyyg.2018.02.18
|
Spatiotemporal analysis of GRACE-based groundwater storage variation in North China Plain
Qiuyan SHU1,2(), Yun PAN1,2, Huili GONG1,2, Zhiyong HUANG1,2, Longqun ZHENG1,2
1.College of Resource and Environment and Tourism, Capital Normal University, Beijing 100048, China
2.Base of the State Key Laboratory of Urban Environmental Process and Digital Modeling,Capital Normal University, Beijing 100048, China
Download: PDF(2799 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

GWSA (groundwater storage anomaly) data of North China Plain from 2003 to 2015 were estimated from terrestrial water storage change (TWSC) data retrieved by monthly GRACE (gravity recovery and climate experiment). The EOF (empirical orthogonal function) method was applied to analyzing the GWSA, and it is shown that cumulative contribution rate of the first three EOF modes reached up to 96.35%. The explanation rate of the total variance of first mode reached about 80%. It is shown that GWSA in the North China Plain behaved consistently descending in the whole region with obvious seasonal fluctuations, caused by groundwater exploitation and precipitation. The second and third mode, with an explanation rate of about 12% and 5%, showed that spatial pattern in northeast-southwest direction and that in northwest-southeast direction were obviously opposite. However, no significant temporal diversification was found, presumably mainly controlled by water cycle under the coastal-inland, piedmont-plain and hydrogeological conditions. This study helps to further understand the spatiotemporal characteristics and drive mechanism of groundwater change in North China Plain.

Keywords ground water storage variations      North China Plain      GRACE      EOF     
:  TV211.1  
Issue Date: 30 May 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qiuyan SHU
Yun PAN
Huili GONG
Zhiyong HUANG
Longqun ZHENG
Cite this article:   
Qiuyan SHU,Yun PAN,Huili GONG, et al. Spatiotemporal analysis of GRACE-based groundwater storage variation in North China Plain[J]. Remote Sensing for Land & Resources, 2018, 30(2): 132-137.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.02.18     OR     https://www.gtzyyg.com/EN/Y2018/V30/I2/132
Fig.1  Location of study region
Fig.2  Temporal variation of GRACE GWS and GWS in situ
周年GWS均值 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年 均值 方差
GRACE反演值 126.5 189.2 136.2 88.1 108.2 106.2 124.6 172.5 164.5 135.1 33.7
观测井实测值 182.1 148.6 173.8 111.1 152.4 142.0 145.7 150.7 136.7 149.2 20.5
Tab.1  Annual amplitude of GRACE GWS and GWS in situ (mm)
参数 EOF模态
1 2 3 4 5
方差贡献率 79.93 11.76 4.66 1.68 0.81
累计 79.93 91.69 96.35 98.03 98.84
Tab.2  Accumulated variance contribution rate of the first 5 EOF models of GWS in North China Plain (%)
Fig.3  Characteristic root of each EOF model of GWS in North China Plain
Fig.4  Three feature vector fields of variety of GWS from 2003 to 2015 in North China Plain
[1] 张利平, 夏军, 胡志芳 . 中国水资源状况与水资源安全问题分析[J]. 长江流域资源与环境, 2009,18(2):116-120.
doi: 10.3969/j.issn.1004-8227.2009.02.004 url: http://d.wanfangdata.com.cn/Periodical/cjlyzyyhj200902004
[1] Zhang L P, Xia J, Hu Z F . Situation and problem analysis of water resource security in China[J]. Resources and Environment in the Yangtze Basin, 2009,18(2):116-120.
[2] 刘昌明 . 建设节水型社会缓解地下水危机[J].中国水利, 2007(15):10-13.
doi: 10.3969/j.issn.1000-1123.2007.15.005 url: http://www.cqvip.com/Main/Detail.aspx?id=25187563
[2] Liu C M . Building water-saving society and alleviating groundwater crisis[J].China Water Resources, 2007(15):10-13.
[3] Yeh P J F, Swenson S C, Famiglietti J S, et al.Famiglietti J S,et al.Remote sensing of groundwater storage changes in Illinois using the gravity recovery and climate experiment (GRACE)[J].Water Resources Research, 2006, 42(12)W 12203: 1-7.doi: 10.1029/2006WR005374.
doi: 10.1029/2006WR005374 url: http://onlinelibrary.wiley.com/doi/10.1029/2006WR005374/full
[4] Feng W, Zhong M, Lemoine J M , et al. Evaluation of groundwater depletion in North China using the gravity recovery and climate experiment (GRACE) data and ground-based measurements[J]. Water Resources Research, 2013,49(4):2110-2118.
doi: 10.1002/wrcr.20192 url: http://doi.wiley.com/10.1002/wrcr.20192
[5] 张光辉, 费宇红, 刘春华 , 等. 华北平原灌溉用水强度与地下水承载力适应性状况[J]. 农业工程学报, 2013,29(1):1-10.
doi: 10.3969/j.issn.1002-6819.2013.01.001 url: http://www.cqvip.com/QK/90712X/201301/44571942.html
[5] Zhang G H, Fei Y H, Liu C H , et al. Adaptation between irrigation intensity and groundwater carrying capacity in North China Plain[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(1):1-10.
[6] Awange J L, Gebremichael M, Forootan E , et al. Characterization of Ethiopian mega hydrogeological regimes using GRACE,TRMM and GLDAS datasets[J]. Advances in Water Resources, 2014,74:64-78.
doi: 10.1016/j.advwatres.2014.07.012 url: http://linkinghub.elsevier.com/retrieve/pii/S0309170814001523
[7] Kang K X, Li H, Peng P , et al.Low-frequency variability of terrestrial water budget in China using GRACE satellite measurements from 2003 to 2010[J]. Geodesy and Geodynamics, 2015,6(6):444-452.
doi: 10.1016/j.geog.2015.12.001 url: http://linkinghub.elsevier.com/retrieve/pii/S1674984715000944
[8] 阎福礼, 李书明, 王世新 , 等. 基于EOF方法长江流域2002—2013年GRACE水储量时空变化研究[J]. 长江流域资源与环境, 2015,24(S1):131-137.
[8] Yan F L, Li S M, Wang S X , et al. Temporal and spatial variations research of GRACE water storage changes over the Yangtze River Bisin[J]. Resources and Environment in the Yangtze Basin, 2015,24(S1):131-137.
[9] 张兆吉, 雒国中, 王昭 , 等. 华北平原地下水资源可持续利用研究[J]. 资源科学, 2009,31(3):355-360.
[9] Zhang Z J, Luo G Z, Wang Z , et al. Study on sustainable utilization of groundwater in North China Plain[J]. Resources Science, 2009,31(3):355-360.
[10] 魏凤英 . 全国夏季降水区域动态权重集成预报试验[J]. 应用气象学报, 1999,10(4):402-409.
doi: 10.3969/j.issn.1001-7313.1999.04.003 url: http://d.wanfangdata.com.cn/Periodical_yyqxxb199904003.aspx
[10] Wei F Y . Regional consensus forecast method with dynamic weighting for summer precipitation over China[J]. Quarterly Journal of Applied Meteorlolgy, 1999,10(4):402-409.
[11] 施能, 章爱国, 余锦华 . 气象学中使用统计检验的几个重要注记[J]. 气象科学, 2009,29(5):670-673.
[11] Shi N, Zhang A G, Yu J H , Some important problems of the statistics test in meteorology[J]. Scientia Meteorologica Sinica, 2009,29(5):670-673.
[12] North G R, Bell T L, Cahalan R F , et al. Sampling errors in the estimation of empirical orthogonal functions[J]. Monthly Weather Review, 1982,110(7):699-699.
doi: 10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2 url: http://journals.ametsoc.org/doi/abs/10.1175/1520-0493%281982%29110%3C0699%3ASEITEO%3E2.0.CO%3B2
[13] Huang Z Y, Pan Y, Gong H L , et al. Subregional-scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China Plain[J]. Geophysical Research Letters, 2015,42(6):1791-1799.
doi: 10.1002/2014GL062498 url: http://doi.wiley.com/10.1002/2014GL062498
[1] ZHOU Fangcheng, TANG Shihao, HAN Xiuzhen, SONG Xiaoning, CAO Guangzhen. Research on reconstructing missing remotely sensed land surface temperature data in cloudy sky[J]. Remote Sensing for Land & Resources, 2021, 33(1): 78-85.
[2] YU Hairuo, GONG Huili, CHEN Beibei, ZHOU Chaofan. Emerging risks and the prospect of urban underground space security based on InSAR-GRACE satellite under the new hydrological background[J]. Remote Sensing for Land & Resources, 2020, 32(4): 16-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech