Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (2) : 231-237     DOI: 10.6046/gtzyyg.2018.02.31
|
Topographic variable analysis and lithologic classification based on DEM
Ting WANG(), Jun PAN(), Lijun JIANG, Lixin XING, Yifan YU, Pengju WANG
College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China
Download: PDF(2903 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Lithologic identification and classification can provide important basic information for regional geological survey and mineral resource exploration. Topographic variables constitute the quantitative parameters of digital expression for topography, and are very important in improving the accuracy. Based on the classification validity and correlation of 10 topographic variables such as elevation, slope, profile curvature, surface roughness, and surface cutting depth in the known lithologic area, the authors screened the topographic variables and used the variables under the best scale for the classification of lithology. The result shows that the combination of elevation, profile curvature, surface cutting depth, surface roughness and plane curvature is very useful and, in terms of the capability of identification, each variable has the corresponding lithology. The adding of the best terrain variables combination to fully express terrain characteristics in identifying each type of lithology is helpful to improving the recognition and classification of lithology.

Keywords geological lithology classification      topography      topographic variables      mean change point analysis      unsupervised classification     
:  TP75  
Corresponding Authors: Jun PAN     E-mail: 1362258925@qq.com;Panj@jlu.edu.cn
Issue Date: 30 May 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ting WANG
Jun PAN
Lijun JIANG
Lixin XING
Yifan YU
Pengju WANG
Cite this article:   
Ting WANG,Jun PAN,Lijun JIANG, et al. Topographic variable analysis and lithologic classification based on DEM[J]. Remote Sensing for Land & Resources, 2018, 30(2): 231-237.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.02.31     OR     https://www.gtzyyg.com/EN/Y2018/V30/I2/231
Fig.1  Remote sensing image in Songling
Fig.2  Lithologic unit distribution in Songling
Fig.3  DEM image in Songling
序号 地形因子 区分情况 分开数量
1 高程 (3,11)(5,11)(2,6 7 9 10 11)(6,7 9 11)(9,11)(11,7 10) 13
2 剖面曲率 (3,5 7 9)(5,10 11)(1,10 11)(6,10)(9,10 11)(11,7)(10,7) 12
3 地表切割深度 (5,6 7 10 11)(1,6 10 11)(4,10)(9,10)(10,7) 10
4 纵向曲率 (3,9 10)(5, 10)(1,10)(6,10)(9,10 11)(11,7)(10,7) 9
5 地表粗糙度 (3,7)(5, 9)(2,7)(1,7)(4,7)(6,7)(9,7)(11,7)(10,7) 9
6 坡度 (3,7)(2,7)(4,7)(6,7)(9,7)(11,7)(10,7) 7
7 地形起伏度 (3,10)(5,10)(1,10)(4,10 11)(9,10) 6
8 高程变异系数 (3,11)(5,11)(4,11)(9,10 11)(11,7) 6
9 平面曲率 (5,10)(1,10 11)(9,10 11) 4
10 横向曲率 (5,10)(9,10) 2
Tab.1  Distinction between the factors
Fig.4  Patterns of topographic variables range of different lithologies
窗口大小 面积/(100m2) 地表切割深度均值/m 地表粗糙度均值 高程均值/m 平面曲率均值 剖面曲率均值
3 81 6.66 1.021 182 657.775 16 -0.012 682 -0.005 103
11 1 089 28.60 1.021 183 657.768 86 -0.012 759 -0.005 099
19 3 249 45.46 1.021 183 657.755 86 -0.012 719 -0.005 095
27 6 561 58.88 1.021 183 657.736 16 -0.012 651 -0.005 104
35 11 025 69.81 1.021 185 657.711 20 -0.012 465 -0.005 130
43 16 641 78.98 1.021 189 657.684 66 -0.012 358 -0.005 145
51 23 409 86.88 1.021 194 657.658 69 -0.012 229 -0.005 155
67 40 401 100.14 1.021 211 657.613 29 -0.012 155 -0.005 156
101 91 809 121.94 1.021 244 657.527 59 -0.012 169 -0.005 144
Tab.2  Correspondence between the unit size of the terrain factor and the mean value
窗口大小 面积/(100 m2) 地表切割深度均值/m
3 81 6.66
5 225 12.79
7 441 18.45
9 729 23.70
11 1 089 28.60
13 1 521 33.21
15 2 025 37.54
17 2 601 41.61
19 3 249 45.46
21 3 969 49.09
23 4 761 52.53
25 5 625 55.79
27 6 561 58.88
31 8 649 64.61
35 11 025 69.81
39 13 689 74.58
43 16 641 78.98
47 19 881 83.06
51 23 409 86.88
55 27 225 90.47
Tab.3  Correspondence between the unit size of the terrain factor and the mean value of the surface cutting depth
Fig.5  Fitting curve of the average surface cutting depth and the unit area
K SK S-SK
2 12.589 3.678
3 9.960 6.307
4 8.102 8.165
5 6.799 9.468
6 5.909 10.358
7 5.336 10.931
8 5.015 11.252
9 4.897 11.370
10 4.956 11.321
11 5.134 11.133
12 5.437 10.830
13 5.836 10.431
14 6.313 9.954
15 7.112 9.155
16 8.182 8.085
17 9.477 6.790
18 10.961 5.306
19 12.603 3.664
20 14.379 1.888
Tab.4  Statistical results of mean change point method
Fig.6  Image classification result
分布图中
岩性编号
分类结果图中岩性编号
1 2 3 4 5 6 7 8
1 5 949 761 2 086 659 30 010 953 33 918 272 18 239 900 7 215 781 3 493 717 2 376 494
2 19 346 740 18 394 248 58 110 957 18 599 059 56 231 876 23 124 459 4 909 170 9 350 201
3 48 945 930 34 583 857 25 967 775 10 214 733 84 839 723 84 188 991 32 131 963 62 783 966
4 5 626 219 9 654 631 25 371 820 10 171 135 30 800 045 15 106 756 5 931 198 1 100 251
5 12 454 452 3 169 551 55 132 367 32 902 075 44 977 491 39 889 654 5 682 589 10 919 553
6 16 342 165 13 487 423 9 719 016 0 38 424 795 13 590 921 10 025 250 10 328 643
7 0 1 206 611 2 390 134 900 670 1 704 757 2 589 176 1 153 986 0
8 787 456 5 478 334 21 0 25 523 1 213 225 526 591 80 577 218
9 2 310 757 4 577 790 4 407 416 0 8 329 258 2 721 464 3 564 971 0
10 545 952 2 520 577 3 485 273 0 5 038 708 0 2 222 177 692 278
11 0 0 3 416 612 3 705 695 691 222 1 144 187 0 0
Tab.5  Corresponds result of the lithologic unit area (m2)
分类结果
图中编号
对应面积/m2 岩性单元分布
图中各类总
面积/m2
对应面积占各类
的百分比/%
1 16 342 165.11 116 775 952.60 13.99
2 9 654 631.46 98 813 007.72 9.77
3 58 110 957.00 218 991 255.80 26.54
4 33 918 271.69 110 411 638.10 30.72
5 84 839 722.93 292 867 380.20 28.97
6 39 889 653.55 197 008 668.20 20.25
7 3 564 971.06 70 808 773.97 5.03
8 80 577 217.73 186 747 411.80 43.15
Tab.6  Corresponds result of lithologic unit
[1] 余海阔, 李培军 . 运用LANDSAT ETM+和ASTER数据进行岩性分类[J]. 岩石学报, 2010,26(1):345-351.
[1] Yu H K, Li P J . Lithologic mapping using LANDSAT ETM+ and ASTER data[J]. Acta Petrologica Sinica, 2010,26(1):345-351.
[2] 王晓东 . 水系提取方法研究及其地质意义[D]. 长春:吉林大学, 2015.
[2] Wang X D . The Research of Drainage Extraction Method and Its Geological Significance[D]. Changchun:Jinlin University, 2015.
[3] 于亚凤, 杨金中, 陈圣波 , 等. 基于光谱指数的遥感影像岩性分类[J]. 地球科学, 2015,40(8):1415-1419.
[3] Yu Y F, Yang J Z, Chen S B , et al. Lithologic classification from remote sensing images based on spectral index[J]. Earth Science, 2015,40(8):1415-1419.
[4] 黄颖端, 李培军, 李争晓 . 基于地统计学的图像纹理在岩性分类中的应用[J]. 国土资源遥感, 2003,15(3):45-49.doi: 10.6046/gtzyyg.2003.03.11
doi: 10.3969/j.issn.1001-070X.2003.03.011 url: http://d.wanfangdata.com.cn/Periodical/gtzyyg200303011
[4] Huang Y D, Li P J, Li Z X . The application of geostatistical image texture to remote sensing lithological classification[J]. Remote Sensing for Land and Resources, 2003,15(3):45-49.doi: 10.6046/gtzyyg.2003.03.11
[5] 曾德耀 . 基于最佳地形因子组合的地貌形态类型划分研究[D]. 重庆:重庆交通大学, 2015.
[5] Zeng D Y . Classification of Relief Form Based on the Best Terrain Factor Combination[D]. Chongqing:Chongqing Jiaotong University, 2015.
[6] 杨晏立, 何政伟, 杨斌 , 等. 最佳因子复合的四川省地貌类型自动划分[J].陕西理工学院学报(自然科学版)2009, 25(4):74-79.
doi: 10.3969/j.issn.1673-2944.2009.04.015 url: http://d.wanfangdata.com.cn/Periodical_sxgxyxb200904015.aspx
[6] Yang Y L, He Z W, Yang B , et al. Automatic classification of landform types in Sichuan Province with the optimum factors complex[J].Journal of Shaanxi University of Technology(Natural Science Edition)2009, 25(4):74-79.
[7] 姜莎莎, 李培军 . 基于ASTER图像和地形因子的岩性单元分类——以新疆木垒地区为例[J]. 地球信息科学学报, 2011,13(6):825-832.
doi: 10.3724/SP.J.1047.2011.00825 url: 研究点分析
[7] Jiang S S, Li P J . Lithologic unit mapping using ASTER data and topographic variables:A case study of Mulei area of XinJiang[J]. Journal of Geo-Information Science, 2011,13(6):825-832.
[8] Grebby S, Cunningham D, Naden J , et al. Lithological mapping of the Troodos ophiolite,Cyprus,using airborne LiDAR topographic data[J]. Remote Sensing of Environment, 2010,114(4):713-724.
doi: 10.1016/j.rse.2009.11.006 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425709003319
[9] Grebby S, Naden J, Cunningham D , et al. Integrating airborne multispectral imagery and airborne LiDAR data for enhanced lithological mapping in vegetated terrain[J]. Remote Sensing of Environment, 2011,115(1):214-226.
doi: 10.1016/j.rse.2010.08.019 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425710002592
[10] Li P J, Cheng T, Guo J C . Multivariate image texture by multivariate variogram for multispectral image classification[J]. Photogrammetric Engineering and Remote Sensing, 2009,75(2):147-157.
doi: 10.1007/s00190-008-0251-8 url: http://openurl.ingenta.com/content/xref?genre=article&issn=0099-1112&volume=75&issue=2&spage=147
[11] 周启明, 刘学军 . 数字地形分析[M]. 北京: 科学出版社, 2006: 52-75.
[11] Zhou Q M, Liu X J. Digital Terrain Analysis[M]. Beijing: Science Press, 2006: 52-75.
[12] 刘少峰, 王陶, 张会平 , 等. 数字高程模型在地表过程研究中的应用[J]. 地学前缘, 2005,12(1):303-309.
[12] Liu S F, Wang T, Zhang H P , et al. Application of digital elevation model to surficial process research[J]. Earth Science Frontiers, 2005,12(1):303-309.
[13] 杨昕, 汤国安, 刘学军 , 等. 数字地形分析的理论、方法与应用[J]. 地理学报, 2009,64(9):1058-1070.
[13] Yang X, Tang G A, Liu X J , et al. Digital terrain analysis:Theory, method and application[J]. Acta Geographica Sinica, 2009,64(9):1058-1070.
[14] 赵斌滨, 程永锋, 丁士君 , 等. 基于SRTM-DEM的我国地势起伏度统计单元研究[J]. 水利学报, 2015,46(s1):284-290.
[14] Zhao B B, Cheng Y F, Ding S J , et al. Statistical unit of relief amplitude in China based on SRTM-DEM[J]. Journal of Hydraulic Engineering, 2015,46(s1):284-290.
[15] 高蜻, 唐丽霞, 谷晓平 , 等. 基于ArcGIS的望谟河流域地势起伏度分析[J]. 中国水土保持科学, 2015,13(4):9-14.
doi: 10.3969/j.issn.1672-3007.2015.04.002 url: http://www.cqvip.com/QK/87068X/201504/665912792.html
[15] Gao Q, Tang L X, Gu X P , et al. Analysis of ArcGIS-based relief amplitude of the Wangmo River watershed in Guizhou[J]. Science of Soil and Water Conservation, 2015,13(4):9-14.
[1] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
[2] LI Yang, YUAN Lin, ZHAO Zhiyuan, ZHANG Jinlei, WANG Xianye, ZHANG Liquan. Inversion of tidal flat topography based on unmanned aerial vehicle low-altitude remote sensing and field surveys[J]. Remote Sensing for Natural Resources, 2021, 33(3): 80-88.
[3] Yaping LI, Xiaoping LU, Hang ZHANG, Zezhong LU, Shunyao WANG. Soil erosion in Huaihe River Basin based on GIS and RUSLE:Exemplified by Shangcheng County, Xinyang City[J]. Remote Sensing for Land & Resources, 2019, 31(4): 243-249.
[4] ZHANG Jie, LIANG Mingjian, SHAO Yanxiu. Openness: A visualization parameter for two-dimensional relief[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 172-176.
[5] WAN Jie, LIAO Jingjuan, XU Tao, SHEN Guozhuang. Accuracy evaluation of SRTM data based on ICESat/GLAS altimeter data: A case study in the Tibetan Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 100-105.
[6] GUO Qiaozhen, NING Xiaoping, WANG Zhiheng, JIANG Weiguo. Impact analysis of landform for land use dynamic change of the partly mountainous area: A case study of Jixian County in Tianjin City[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 153-159.
[7] LIU Yadi, WANG Xiaoqin, JIANG Hong. Estimation of vegetation coverage based on topography-adjusted vegetation index (TAVI) in Changting County, Fujian Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 164-171.
[8] LI Na, ZHAO Hui-Jie. An Improved Independent Component Analysis Method for Unsupervised Classification of Hyperspectral Data  [J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 70-74.
[9] GAN Fu-Ping, YU Yan-Mei, YAN BO-Kun. A PRIMARY STUDY OF THE RELATIONSHIP BETWEEN LUNAR SURFACE TOPOGRAPHY AND PHYSIOGNOMY AND GEOLOGICAL INFORMATION COUPLING[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(4): 14-18.
[10] LIN Gui-lan, FANG Jian-yong, CHEN Feng . A REMOTE SENSING ANALYSIS OF SHALLOW SEA TOPOGRAPHIC EVOLUTIONARY TREND OF TONG'AN BAY, IN XIAMEN[J]. REMOTE SENSING FOR LAND & RESOURCES, 2004, 16(4): 63-67.
[11] FU Bin, HUANG Wei-gen. SAR SIMULATION STUDY OF STEEP SLOPE BOTTOM TOPOGRAPHY[J]. REMOTE SENSING FOR LAND & RESOURCES, 2003, 15(1): 33-37.
[12] Dang fuxing . SIMULATED REFLECTANCE METHOD OF TOPOGRAPHY AFFECT CORRECTION FOR AIRBORNE THEMATIC MAPPER[J]. REMOTE SENSING FOR LAND & RESOURCES, 1999, 11(4): 33-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech