Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (3) : 242-249     DOI: 10.6046/gtzyyg.2019.03.30
|
Comparison and analysis of water indexes in muddy coasts based on MODIS data: A case study of the Yellow River Delta coast
Jiaping WU1, Yang ZHANG1(), Jie ZHANG2, Shenglong FAN1, Chao YANG1, Xiaofang ZHANG1
1. College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
2. Poyang Lake Research Center, Jiangxi Academy of Sciences, Nanchang 330096, China
Download: PDF(3355 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Muddy coastal areas have a unique and complex water environment. It is of great scientific significance to deeply analyze the water extraction efficiency of water index in this area. The authors took the Yellow River Delta coast as the study area and used the MODIS and Landsat remote sensing data of 2008, 2009 and 2015. The water extraction performance of 6 water index (NDWI, MNDWI, AWEInsh, AWEIsh, TCW, WI2015) were analyzed from spectral characteristics of land cover types. The best threshold of each water index was obtained through the ROC curve. The accuracy and extraction errors of water indexes in muddy coastal area were studied, and the influence of different land cover factors on water extraction was analyzed. The results show that the AWEInsh have the best performance in extraction of water, with an overall accuracy of 97.29%, mapping accuracy of 96.84%, and user accuracy of 97.69%. The accuracy of seawater extraction by different water indexes is higher than 90%. The extraction accuracy of land water is at general level and the map precision is less than 80%. The capability of NDWI for identifying tidal flat water is poor, and the accuracy of mapping is lower than that of other water indexes. The different water indexes have high omission error of land water, and the omission errors of seawater and tidal flat water are low. The MNDWI has the highest omission error of seawater. The influence of the tidal flat soil on the water extraction is the greatest, followed by the cultivated soil. The sparse vegetation, luxuriant vegetation, and built-up area have the least impact. This study provides a reference for the further development of water extraction methods suitable for muddy coastal areas.

Keywords MODIS      water index      ROC      accuracy evaluation      Yellow River Delta coast     
:  TP79  
Corresponding Authors: Yang ZHANG     E-mail: zhangyang2907@163.com
Issue Date: 30 August 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiaping WU
Yang ZHANG
Jie ZHANG
Shenglong FAN
Chao YANG
Xiaofang ZHANG
Cite this article:   
Jiaping WU,Yang ZHANG,Jie ZHANG, et al. Comparison and analysis of water indexes in muddy coasts based on MODIS data: A case study of the Yellow River Delta coast[J]. Remote Sensing for Land & Resources, 2019, 31(3): 242-249.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.03.30     OR     https://www.gtzyyg.com/EN/Y2019/V31/I3/242
Fig.1  Location of the study area
传感器 Landsat影像 MODIS影像
成像时间 轨道号 传感器 成像时间 轨道号
Landsat5 TM 20081007T02: 26 121/34 MODIS/Terra 20081007T02: 10 h27v05
Landsat5 TM 20090503T02: 29 121/34 MODIS/Terra 20090503T02: 10 h27v05
Landsat5 TM 20090519T02: 29 121/34 MODIS/Terra 20090519T02: 10 h27v05
Landsat5 TM 20090604T02: 29 121/34 MODIS/Terra 20090604T02: 10 h27v05
Landsat7 ETM+ 20150325T02: 40 121/34 MODIS/Terra 20150325T02: 55 h27v05
Tab.1  Description of remote sensing data used in the study
MODIS影像成像时间 海水 潮滩水体 陆地水体 潮滩土壤 耕地土壤 稀疏植被 茂盛植被 建成区
20081007T02: 10 3 480 108 412 468 109 1 429 707 287
20090503T02: 10 3 402 106 492 783 1 764 35 0 418
20090519T02: 10 3 422 55 523 848 1 121 470 14 547
20090604T02: 10 3 492 41 467 1 062 498 537 301 602
20150325T02: 55 3 408 171 421 648 1 701 0 0 651
Tab.2  Distribution of sample numbers of various land cover types
水体指数 来源 公式
TCW Crist[3] 0.031 5B3+0.202 1B4+0.310 2B1+
0.159 4B2-0.680 6B6-0.610 9B7
NDWI McFeeters[4] (B4-B2)/(B4+B2)
MNDWI 徐涵秋[5] (B4-B6)/(B4+B6)
AWEInsh Feyisa等[6] 4(B4-B6)-(0.25B2+2.75B7)
AWEIsh Feyisa等[6] B3+2.5B4-1.5(B2+B6)-0.25B7
WI2015 Fisher等[7] 1.720 4+171B4+3B1-70B2-45B6-71B7
Tab.3  Calculation formulas of water indexes
Fig.2  ROC curves of different water indexes
Fig.3  Surface reflectance characteristics of MODIS in the tidal flats
水体
指数
AUC/% FPR/% Kappa
系数
总体精
度/%
制图精
度/%
用户精
度/%
NDWI 99.16 2.34 0.93 96.59 95.78 98.21
MNDWI 98.06 3.36 0.90 93.48 93.93 97.41
AWEInsh 99.54 2.14 0.95 97.29 96.84 97.69
AWEIsh 99.18 2.94 0.94 96.76 96.53 97.51
TCW 99.38 2.38 0.94 96.68 96.63 98.23
WI2015 99.28 3.50 0.94 96.92 97.22 97.39
Tab.4  The average water extraction accuracies of different water indexes
Fig.4  Mapping precisions of three water bodies with different water indexes
误差 地表覆盖类型 NDWI MNDWI AWEInsh AWEIsh TCW WI2015
错分误差 潮滩土壤 1.34 2 1.28 1.66 1.41 1.98
耕地土壤 0.41 0.57 0.3 0.55 0.34 0.59
稀疏植被 0 0.02 0.01 0 0.02 0.01
茂盛植被 0 0 0 0 0 0
建成区 0.03 0 0.01 0.02 0.01 0.02
漏分误差 海水 0.32 2.88 0.22 0.26 0.28 0.18
潮滩水体 0.82 0.11 0.07 0.22 0.06 0.11
陆地水体 3.1 3.08 2.85 3 3.04 2.5
Tab.5  Average water extraction errors of different water indexes(%)
Fig.5  Water extraction result diagrams of MNDWI
[1] 水利部海河水利委员会漳河上游管理局, 河北工程大学. 遥感技术在水环境评价中的应用[M]. 北京: 中国水利水电出版社, 2015.
[1] Haihe Water Conservancy Commission of the Ministry of Water Resources Zhanghe Upper Reaches Administration Bureau, Hebei University of Engineering. Application of Remote Sensing Technology in Water Environment Evaluation[M]. Beijing: China Water and Power Press, 2015.
[2] Ji L, Zhang L, Wylie B . Analysis of dynamic thresholds for the normalized difference water index[J]. Photogrammetric Engineering and Remote Sensing, 2009,75(11):1307-1317.
[3] Crist E P . A TM Tasseled Cap equivalent transformation for reflectance factor data[J]. Remote Sensing of Environment, 1985,17(3):301-306.
[4] McFeeters S K . The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996,17(7):1425-1432.
[5] 徐涵秋 . 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005,9(5):589-595.
doi: 10.3321/j.issn:1007-4619.2005.05.012 url: http://d.wanfangdata.com.cn/Periodical/ygxb200505012
[5] Xu H Q . A study on information extraction of water body with the modified normalized difference water index(MNDWI)[J]. Journal of Remote Sensing, 2005,9(5):589-595.
[6] Feyisa G L, Meilby H, Fensholt R , et al. Automated water extraction index:A new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 2014,140(1):23-35.
[7] Fisher A, Flood N, Danaher T . Comparing Landsat water index methods for automated water classification in eastern Australia[J]. Remote Sensing of Environment, 2016,175:167-182.
[8] Sharma R, Tateishi R, Hara K , et al. Developing superfine water index (SWI) for global water cover mapping using MODIS data[J]. Remote Sensing, 2015,7(10):13807-13841.
[9] 莫伟华, 孙涵, 钟仕全 , 等. MODIS水体指数模型(CIWI)研究及其应用[J].遥感信息, 2007(5):16-21.
[9] Mo W H, Sun H, Zhong S Q , et al. Research on the CIWI model and its application[J].Remote Sensing Information, 2007(5):16-21.
[10] Hui F, Xu B, Huang H , et al. Modeling spatial-temporal change of Poyang Lake using multi-temporal Landsat imagery[J]. International Journal of Remote Sensing, 2008,29(20):5767-5784.
[11] Li W B, Du Z Q, Ling F , et al. A comparison of land surface water mapping using the normalized difference water index from TM,ETM+ and ALI[J]. Remote Sensing, 2013,5(11):5530-5549.
[12] 廖程浩, 刘雪华 . MODIS数据水体识别指数的识别效果比较分析[J]. 国土资源遥感, 2008,20(4):22-26.doi: 10.6046/gtzyyg.2008.04.06.
doi: 10.6046/gtzyyg.2008.04.06
[12] Liao C H, Liu X H . An effectiveness comparison between water body indices based on MODIS data[J]. Remote Sensing for Land and Resources, 2008,20(4):22-26.doi: 10.6046/gtzyyg.2008.04.06.
[13] 车向红, 冯敏, 姜浩 , 等. 2000—2013年青藏高原湖泊面积MODIS遥感监测分析[J]. 地球信息科学学报, 2015,17(1):99-107.
doi: 10.3724/SP.J.1047.2015.00099
[13] Che X H, Feng M, Jiang H , et al. Detection and analysis of Qinghai-Tibet Plateau lake area from 2000 to 2013[J]. Journal of Geo-Information Science, 2015,17(1):99-107.
[14] 王净, 李亚春, 景元书 . 基于MODIS数据的水体识别指数方法的比较研究[J]. 气象科学, 2009,29(3):342-347.
[14] Wang J, Li Y C, Jing Y S . Comparison and research on the different index models used in water extraction based on remote sensing data of MODIS[J]. Journal of the Meteorological Sciences, 2009,29(3):342-347.
[15] 成国栋 . 黄河三角洲现代沉积作用及模式[M]. 北京: 地质出版社, 1991: 96-100.
[15] Cheng G D. The Modern Sedimentation and Model of the Yellow River Delta[M]. Beijing: Geological Publishing House, 1991: 96-100.
[16] 时连强, 李九发, 应铭 , 等. 近、现代黄河三角洲发育演变研究进展[J]. 海洋科学进展, 2005,23(1):96-104.
[16] Shi L Q, Li J F, Ying M , et al. Advances in researches on the Modern Yellow River Delta development and evolution[J]. Advances in Marine Science, 2005,23(1):96-104.
[17] Zhang Y . Coastal environmental monitoring using remotely sensed data and GIS techniques in the modern Yellow River Delta,China[J]. Environmental Monitoring and Assessment, 2011,179(1-4):15-29.
[18] 张旸, 陈沈良, 谷国传 . 黄河三角洲沿岸日潮区的空间分布与潮汐特征[J]. 水动力学研究与进展, 2015,30(5):540-548.
[18] Zhang Y, Chen S L, Gu G C . Spatial extent and tidal characteristics of the diurnal tidal zone along the Yellow River Delta coast[J]. Journal of Hydrodynamics, 2015,30(5):540-548.
[19] 张高生, 王仁卿 . 现代黄河三角洲生态环境的动态监测[J]. 中国环境科学, 2008,28(4):380-384.
doi:
[19] Zhang G S, Wang R Q . Research on dynamic monitoring of ecological environment in modern Yellow River Delta[J]. China Environmental Science, 2008,28(4):380-384.
[20] 汪小钦, 王钦敏, 刘高焕 , 等. 黄河三角洲土地利用/覆盖格局与演化分析[J]. 水土保持学报, 2006,20(5):158-161.
[20] Wang X Q, Wang Q M, Liu G H , et al. Analysis of land use and land cover change in Yellow River Delta[J]. Journal of Soil and Water Conservation, 2006,20(5):158-161.
[21] 刘玉洁, 杨忠东 . MODIS遥感信息处理原理与算法[M]. 北京: 科学出版社, 2001: 1-4.
[21] Liu Y J, Yang Z D. The Principle and Algorithm of MODIS Remote Sensing Information Processing[M]. Beijing: Science Press, 2001: 1-4.
[22] Vermote E F, Kotchenova S Y, Ray J P . MODIS Surface Reflectance User’s Guide[M]. Land Surface Reflectance Science Computing Facility, 2011.
[23] Sun Z, Zhao Y, Li S . Research on polarized remote sensing of monitoring of water pollution [C]//International Conference on Bioinformatics and Biomedical Engineering.IEEE, 2010: 1-5.
[24] Fawcett T . An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006,27(8):861-874.
[25] Robin X, Turck N, Hainard A , et al. pROC:An open-source package for R and S+ to analyze and compare ROC curves[J]. BMC Bioinformatics, 2011,12(1):1-8.
[26] 韩震 . 海岸带淤泥质潮滩和Ⅱ类水体悬浮泥沙遥感信息提取与定量反演研究[D]. 上海:华东师范大学, 2004.
[26] Han Z . Remote Sensing Information Extraction and Quantitative Inversion Research of Silt Tidal Fiat and Suspended Sediment of CaseⅡWaters in Coast Zone[D]. Shanghai:East China Normal University, 2004.
[27] 顾燕, 张鹰, 李欢 . 基于实测光谱的潮滩土壤含水量遥感反演模型研究[J]. 湿地科学, 2013,11(2):167-172.
[27] Gu Y, Zhang Y, Li H . Remote sensing retrieval model on soil moisture content of tidal flat based on measured spectra[J]. Wetland Science, 2013,11(2):167-172.
[28] 任广波, 张杰, 马毅 . 黄河三角洲典型植被地物光谱特征分析与可分性查找表[J]. 海洋环境科学, 2015,34(3):420-426.
[28] Ren G B, Zhang J, Ma Y . Spectral discrimination and separable feature lookup table of typical vegetation species in Yellow River Delta wetland[J]. Marine Environmental Science, 2015,34(3):420-426.
[29] 毕乃双, 杨作升, 王厚杰 , 等. 黄河调水调沙期间黄河入海水沙的扩散与通量[J]. 海洋地质与第四纪地质, 2010,30(2):27-34.
[29] Bi N S, Yang Z S, Wang H J , et al. Characteristics of dispersal of the Yellow River water and sediment to the sea during water-sediment regulation period of the Yellow River and its dynamic mechanism[J]. Marine Geology and Quaternary Geology, 2010,30(2):27-34.
[30] Ryu J H, Won J S, Min K D . Waterline extraction from Landsat TM data in a tidal flat:A case study in Gomso Bay,Korea[J]. Remote Sensing of Environment, 2002,83(3):442-456.
[1] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[2] ZHANG Aizhu, WANG Wei, ZHENG Xiongwei, YAO Yanjuan, SUN Genyun, XIN Lei, WANG Ning, HU Guang. A hierarchical spatial-temporal fusion model[J]. Remote Sensing for Natural Resources, 2021, 33(3): 18-26.
[3] WEI Geng, HOU Yuqiao, ZHA Yong. Analysis of aerosol type changes in Wuhan City under the outbreak of COVID-19 epidemic[J]. Remote Sensing for Natural Resources, 2021, 33(3): 238-245.
[4] ZHAO Longxian, DAI Jingjing, ZHAO Yuanyi, JIANG Qi, LIU Tingyue, FU Minghai. A study of mine site selection of the Duolong ore concentration area in Tibet based on RS and GIS technology[J]. Remote Sensing for Land & Resources, 2021, 33(2): 182-191.
[5] MIAO Miao, XIE Xiaoping. Spatial-temporal evolution analysis of Rizhao coastal zone during 1988—2018 based on GIS and RS[J]. Remote Sensing for Land & Resources, 2021, 33(2): 237-247.
[6] WEI Geng, HOU Yuqiao, HAN Jiamei, ZHA Yong. The estimation of PM2.5 mass concentration based on fine-mode aerosol and WRF model[J]. Remote Sensing for Land & Resources, 2021, 33(2): 66-74.
[7] CHEN Baolin, ZHANG Bincai, WU Jing, LI Chunbin, CHANG Xiuhong. Historical average method used in MODIS image pixel cloud compensation: Exemplified by Gansu Province[J]. Remote Sensing for Land & Resources, 2021, 33(2): 85-92.
[8] FAN Jiazhi, LUO Yu, TAN Shiqi, MA Wen, ZHANG Honghao, LIU Fulai. Accuracy evaluation of the FY-3C/MWRI land surface temperature product in Hunan Province[J]. Remote Sensing for Land & Resources, 2021, 33(1): 249-255.
[9] SU Longfei, LI Zhengxuan, GAO Fei, YU Min. A review of remote sensing image water extraction[J]. Remote Sensing for Land & Resources, 2021, 33(1): 9-11.
[10] LI Li, HU Xiao, PENG Jun. Fog removal effect optimization of aerial image based on dark channel prior[J]. Remote Sensing for Land & Resources, 2021, 33(1): 108-114.
[11] CHEN Jie, CAI Jun, LI Jing, HE Peng. Oblique aerial photography technology and its application to geological survey:A case study of Wuxia section in the Three Gorges reservoir[J]. Remote Sensing for Land & Resources, 2021, 33(1): 167-173.
[12] WANG Xiaobing. Denoising algorithm based on the fusion of lifting wavelet thresholding and multidirectional edge detection of remote sensing image of mining area[J]. Remote Sensing for Land & Resources, 2020, 32(4): 46-52.
[13] JING Guifei. Analysis of impact of open science on the construction of Global Earth Observation System of Systems[J]. Remote Sensing for Land & Resources, 2020, 32(4): 1-7.
[14] CHENG Xiaoqian, HONG Youtang, CHEN Jinsong, YE Baoying. A study of the long-term remote sensing dynamic monitoring of inland based on ESTARFM[J]. Remote Sensing for Land & Resources, 2020, 32(3): 183-190.
[15] SANG Xiao, GUO Qiaozhen, QIAO Yue, WU Huanhuan, ZANG Jinlong. Research on livability in Changzhi City of Shanxi Province based on multi-source data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 200-207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech