Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (3) : 40-47     DOI: 10.6046/gtzyyg.2018.03.06
|
Comparison and analysis of the interference identification methods for microwave measurements over snow land
Ying WU, Sulin JIANG, Zhenhui WANG
Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/ Joint International Research Laboratory of Climate and Environment Change (ILCEC)/ Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)/Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China
Download: PDF(4928 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The influence of radio-frequency interference (RFI) on spaceborne microwave radiometer measurements is increasingly prominent, which largely reduces the accuracy of geophysical parameter inversion from microwave observations. RFI over Antarctica land was detected and analyzed using spectral difference, normalized principal component analysis (NPCA) and double principal component analysis (DPCA) method based on AMSR-E (the advanced microwave scanning radiometer - earth observing system) Leval 2A measurements during July 1-7, 2011. It is found that, over snow or ice-covered land, the RFI signals are difficult to be detected by spectral difference method, while NPCA method works but for costal areas. However, the DPCA method works well over the Atlantic land. Furthermore. It is also found that stronger RFI signals are detected widely over the Antarctica land at low frequency channels of AMSR-E, and most of the strong RFI signals are collocated with research stations. In general, the RFI is stronger at horizontal polarization channels than those at vertical polarization channels, but in some parts, RFI signals at 10.65 GHz for vertical polarization are stronger than those for horizontal polarization.

Keywords advanced microwave scanning radiometer-earth observation system (AMSR-E)      radio-frequency interference (RFI)      snow land     
:  TP422.2TP722.6  
Issue Date: 10 September 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ying WU
Sulin JIANG
Zhenhui WANG
Cite this article:   
Ying WU,Sulin JIANG,Zhenhui WANG. Comparison and analysis of the interference identification methods for microwave measurements over snow land[J]. Remote Sensing for Land & Resources, 2018, 30(3): 40-47.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.03.06     OR     https://www.gtzyyg.com/EN/Y2018/V30/I3/40
Fig.1  Brightness temperatures with vertical polarizations over Atlantic during July 1—7, 2011
Fig.2  RFI with vertical polarization identified by spectral difference method
Fig.3  RFI of 6.925 GHz at horizontal polarization identified by NPCA
Fig.4  Brightness temperatures of 6.925 GHz, 10.65 GHz and 18.7 GHz at horizontal polarization reconstructed by A1 and A2
Fig.5  RFI distributions of 6.925 GHz at horizontal polarization identified by DPCA
Fig.6  RFI distributions of 6.925 GHz and 10.65 GHz identified by DPCA
范围 6.925 GHz 10.65 GHz
H(水平
极化)
V(垂直
极化)
H(水平
极化)
V(垂直
极化)
南极洲 最大值 25.64 24.96 25.83 25.27
累加值 62 230.56 60 757.22 59 260.72 58 916.54
红框地区 最大值 25.64 24.96 25.83 25.27
累加值 5 126.41 5 013.62 5 632.58 5 543.26
蓝框地区 最大值 7.86 8.02 9.36 9.18
累加值 235.76 164.37 307.64 331.50
Tab.1  Maximum and accumulated values of RFI at 6.925 GHz and 10.65 GHz
范围 判断条件 百分比/%
南极洲 RFI6H - RFI6V > 0 48.35
RFI10H - RFI10V > 0 51.50
红框地区 RFI6H - RFI6V > 0 60.15
RFI10H - RFI10V > 0 67.02
蓝框地区 RFI6H - RFI6V > 0 46.61
RFI10H - RFI10V > 0 52.03
Tab.2  Percentages of dots with larger RFI values for horizontal polarization than those for vertical polarization
[1] 邹晓蕾 . 极轨气象卫星微波成像仪资料[J]. 气象科技进展, 2012,2(3):45-50.
[1] Zou X L . Serial of applications of satellite observations introduction to microwave imager radiance observations from polar-orbiting meteorological satellites[J]. Advances in Meteorological Science and Technology, 2012,2(3):45-50.
[2] 施建成, 杜阳, 杜今阳 , 等. 微波遥感地表参数反演进展[J]. 中国科学(地球科学), 2012,42(6):814-842.
[2] Shi J C, Du Y, Du J Y , et al. Progresses on microwave remote sensing of land surface parameters[J]. Science China Earth Sciences, 2012,55(7):1052-1078.
[3] 张思勃, 官莉 . AMSR-E观测资料干扰对反演地表参数的影响[J]. 中国环境科学, 2015,35(1):260-268.
url: http://d.wanfangdata.com.cn/Conference_8286241.aspx
[3] Zhang S B, Guan L . Effect of AMSR-E data interference on the retrieval of land surface parameters[J]. China Environmental Science, 2015,35(1):260-268.
[4] 吴莹, 王振会 . 被动微波遥感反演地表发射率研究进展[J]. 国土资源遥感, 2012,24(4):1-7.doi: 10.6046/gtzyyg.2012.04.01.
doi: 10.6046/gtzyyg.2012.04.01 url: http://d.wanfangdata.com.cn/Periodical/gtzyyg201204001
[4] Wu Y, Wang Z H . Advances in the study of land surface emissivity retrieval from passive microwave remote sensing[J]. Remote Sensing for Land and Resources, 2012,24(4):1-7.doi: 10.6046/gtzyyg.2012.04.01.
[5] 钱博, 陆其峰, 杨素英 , 等. 卫星遥感微波地表发射率研究综述[J]. 地球物理学进展, 2016,31(3):960-964.
[5] Qian B, Lu Q F, Yang S Y , et al. Review on microwave land surface emissivity by satellite remote sensing[J]. Progress in Geophysics, 2016,31(3):960-964.
[6] 李芹, 钟若飞 . 模拟AMSR-E数据的地表多参数反演[J]. 国土资源遥感, 2011,23(1):42-47.doi: 10.6046/gtzyyg.2011.01.08.
doi: 10.6046/gtzyyg.2011.01.08
[6] Li Q, Zhong R F . Multiple surface parameters retrieval of simulated AMSR-E data[J]. Remote Sensing for Land and Resources, 2011,23(1):42-47.doi: 10.6046/gtzyyg.2011.01.08.
[7] 鲍艳松, 毛飞, 闵锦忠 , 等. 基于FY-3B/MWRI数据的裸土区土壤湿度反演[J]. 国土资源遥感, 2014,26(4):131-137.doi: 10.6046/gtzyyg.2014.04.21.
doi: 10.6046/gtzyyg.2014.04.21
[7] Bao Y S, Mao F, Min J Z , et al. Retrieval of bare soil moisture from FY-3B/MWRI data[J]. Remote Sensing for Land and Resources, 2014,26(4):131-137.doi: 10.6046/gtzyyg.2014.04.21.
[8] 毛克彪, 施建成, 李召良 , 等. 用被动微波AMSR数据反演地表温度及发射率的方法研究[J]. 国土资源遥感, 2005,17(3):14-17.doi: 10.6046/gtzyyg.2005.03.04.
doi: 10.6046/gtzyyg.2005.03.04
[8] Mao K B, Shi J C, Li Z L , et al. The land surface temperature and emissivity retrieved from the AMSR passive microwave data[J]. Remote Sensing for Land and Resources, 2005,17(3):14-17.doi: 10.6046/gtzyyg.2005.03.04.
[9] 周芳成, 宋小宁, 李召良 . 地表温度的被动微波遥感反演研究进展[J]. 国土资源遥感, 2014,26(1):1-7.doi: 10.6046/gtzyyg.2014.01.01.
doi: 10.6046/gtzyyg.2014.01.01 url: http://d.wanfangdata.com.cn/Periodical/gtzyyg201401001
[9] Zhou F C, Song X N, Li Z L . Progress of land surface temperature retrieval based on passive microwave remote sensing[J]. Remote Sensing for Land and Resources, 2014,26(1):1-7.doi: 10.6046/gtzyyg.2014.01.01.
[10] 刘晶, 马红章, 杨乐 , 等. 基于被动微波的地表温度反演研究综述[J]. 遥感技术与应用, 2012,27(6):812-821.
[10] Liu J, Ma H Z, Yang L , et al. A survey of surface temperature retrieval by passive microwave remote sensing[J]. Remote Sensing Technology and Application, 2012,27(6):812-821.
[11] 孙知文, 于鹏珊, 夏浪 , 等. 被动微波遥感积雪参数反演方法进展[J]. 国土资源遥感, 2015,27(1):9-15.doi: 10.6046/gtzyyg.2015.01.02.
doi: 10.6046/gtzyyg.2015.01.02
[11] Sun Z W, Yu P S, Xia L , et al. Progress in study of snow parameter inversion by passive microwave remote sensing[J]. Remote Sensing for Land and Resources, 2015,27(1):9-15.doi: 10.6046/gtzyyg.2015.01.02.
[12] Li L, Njoku E G, Im E , et al. A preliminary survey of radio-frequency interference over the U.S. in Aqua AMSR-E data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004,42(2):380-390.
doi: 10.1109/TGRS.2003.817195 url: http://ieeexplore.ieee.org/document/1266727/
[13] Li L, Gaiser P W, Bettenhausen M H , et al. WindSat radio-frequency interference signature and its identification over land and ocean[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(3):530-539.
doi: 10.1109/TGRS.2005.862503 url: http://ieeexplore.ieee.org/document/1597460/
[14] Njoku E G, Ashcroft P, Chan T K , et al. Global survey and statistics of radio-frequency interference in AMSR-E land observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005,43(5):938-947.
doi: 10.1109/TGRS.2004.837507 url: http://ieeexplore.ieee.org/document/1424270/
[15] Wu Y, Weng F Z . Detection and correction of AMSR-E radio-frequency interference[J]. Acta Meteorologica Sinica, 2011,25(5):669-681.
doi: 10.1007/s13351-011-0510-0 url: http://link.springer.com/10.1007/s13351-011-0510-0
[16] Wu Y, Weng F Z . Applications of an AMSR-E RFI detection and correction algorithm in 1-DVAR over land[J]. Journal of Meteorological Research, 2014,28(4):645-655.
doi: 10.1007/s13351-014-3075-x url: http://link.springer.com/10.1007/s13351-014-3075-x
[17] Lacava T, Coviello I, Faruolo M , et al. A multitemporal investigation of AMSR-E C-band radio-frequency interference[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013,51(4):2007-2015.
doi: 10.1109/TGRS.2012.2228487 url: http://ieeexplore.ieee.org/document/6410024/
[18] Zou X L, Zhao J, Weng F Z , et al. Detection of radio-frequency interference signal over land from FY-3B microwave radiation imager (MWRI)[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012,50(12):4994-5003.
doi: 10.1109/TGRS.2012.2191792 url: http://ieeexplore.ieee.org/document/6195007/
[19] Zhao J, Zou X L, Weng F Z . WindSat radio-frequency interference signature and its identification over Greenland and Antarctic[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013,51(9):4830-4839.
doi: 10.1109/TGRS.2005.862503 url: http://ieeexplore.ieee.org/document/6459586/
[20] 官莉, 张思勃 . 星载微波辐射计欧洲大陆无线电频率干扰分析[J]. 光学学报, 2014,34(7):0728004.
url: http://www.opticsjournal.net/Articles/Abstract?aid=OJ140519000061NkQmTp
[20] Guan L, Zhang S B . Source analysis of radio-frequency interference over Europe land from advanced microwave scanning radiometer-E[J]. Acta Optica Sinica, 2014,34(7):0728004.
[21] Research stations and transportation in Antarctica[EB/OL].[ 2016- 10- 18] .
url: http://www.ecophotoexplorers.com/AntarcticaStations.asp#map2
[1] Ying WU, Sulin JIANG, Zhenhui WANG. Effect of radio-frequency interference on the retrieval of land surface temperature from microwave radiation imager[J]. Remote Sensing for Land & Resources, 2018, 30(4): 90-96.
[2] WU Ying, QIAN Bo, WANG Zhenhui. Effect of radio-frequency interference on the land surface parameters retrieval from passive microwave remote sensing data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 176-181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech