Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (4) : 90-96     DOI: 10.6046/gtzyyg.2018.04.14
|
Effect of radio-frequency interference on the retrieval of land surface temperature from microwave radiation imager
Ying WU, Sulin JIANG, Zhenhui WANG
Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/ Joint International Research Laboratory of Climate and Environment Change (ILCEC)/ Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)/Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China
Download: PDF(4092 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Radio-frequency interference (RFI) over European land was detected and analyzed using convergence metric of one dimensional variational retrieval (1D-VAR) method and then its influence on the retrieval of land surface temperature (LST) was studied based on FY-3B microwave radiation imager (MWRI) Level 1 measurements conducted. Next, two linear regression equations were proposed to correct RFI-contaminated MWRI data. By comparing the retrieved LST products through 1D-VAR method from MWRI measurements before and after RFI correction, it was found that the convergence metric of 1D-VAR analyzing RFI identification method was effective for the observations over the land. Moreover, retrieved LST which were interfered by RFI were abnormally high with large deviations. And the RFI correction algorithm was used effec tively to improve the inversion precision and the utilization ratio of microwave data. Therefore, it is necessary to effectively identify and correct RFI prior to low-frequency observations with spaceborne microwave imagers to retrieve LST.

Keywords radio-frequency interference (RFI)      land surface temperature      one dimensional variational retrieval (1D-VAR)     
:  P422.2TP722.6  
Issue Date: 07 December 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ying WU
Sulin JIANG
Zhenhui WANG
Cite this article:   
Ying WU,Sulin JIANG,Zhenhui WANG. Effect of radio-frequency interference on the retrieval of land surface temperature from microwave radiation imager[J]. Remote Sensing for Land & Resources, 2018, 30(4): 90-96.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.04.14     OR     https://www.gtzyyg.com/EN/Y2018/V30/I4/90
Fig.1  Comparison of brightness temperatures at 10.65 GHz and convergence metric distributions between those with and without RFI correction based on the MWRI data on 20th July 2014 for ascending orbits
Fig.2  Comparison of brightness temperatures at 10.65GHz and convergence metric distributions between those with and without RFI correction based on the MWRI data on 20th July 2014 for descending orbits
Fig.3  Retrieved land surface temperatures with MWRI observations on July 20th,2014
[1] 张廷军, 晋锐, 高峰 . 冻土遥感研究进展:被动微波遥感[J]. 地球科学进展, 2009,24(10):1073-1083.
[1] Zhang T J, Jin R, Gao F . Overview of the satellite remote sensing of frozen ground:Passive microwave sensors[J]. Advances in Earth Science, 2009,24(10):1073-1083.
[2] 施建成, 杜阳, 杜今阳 , 等. 微波遥感地表参数反演进展[J]. 中国科学:地球科学, 2012,42(6):814-842.
[2] Shi J C, Du Y, Du J Y , et al. Progresses on microwave remote sensing of land surface parameters[J]. Science China Earth Science, 2012,55:1052-1078.
[3] 周芳成, 宋小宁, 李召良 . 地表温度的被动微波遥感反演研究进展[J]. 国土资源遥感, 2014,26(1):1-7.doi: 10.6046/gtzyyg.2014.01.01.
[3] Zhou F C, Song X N, Li Z L . Progress of land surface temperature retrieval based on passive microwave remote sensing[J]. Remote Sensing for Land and Resources, 2014,26(1):1-7.doi: 10.6046/gtzyyg.2014.01.01.
[4] 刘晶, 马红章, 杨乐 , 等. 基于被动微波的地表温度反演研究综述[J]. 遥感技术与应用, 2012,27(6):812-821.
[4] Liu J, Ma H Z, Yang L , et al. A survey of surface temperature retrieval by passive microwave remote sensing[J]. Remote Sensing Technology and Application, 2012,27(6):812-821.
[5] 毛克彪, 施建成, 李召良 , 等. 一个针对被动微波数据AMSR-E数据反演地表温度的物理统计算法[J]. 中国科学( D辑), 2006,36(12):1170-1176.
[5] Mao K B, Shi J C, Li Z L , et al. A physics-based statistical algorithm for retrieving land surface temperature from AMSR-E passive microwave data[J]. Science in China(series D)Earth Science, 2006,36(12):1170-1176.
[6] 李芹, 钟若飞 . 模拟AMSR-E数据的地表多参数反演[J]. 国土资源遥感, 2011,23(1):42-47.doi: 10.6046/gtzyyg.2011.01.08.
doi: 10.6046/gtzyyg.2011.01.08 url: http://www.cqvip.com/Main/Detail.aspx?id=37023960
[6] Li Q, Zhong R F . Multiple surface parameters retrieval of simulated AMSR-E data[J]. Remote Sensing for Land and Resources, 2011,23(1):42-47.doi: 10.6046/gtzyyg.2011.01.08.
[7] 王亚维, 宋小宁, 唐伯惠 , 等. 基于FY-2C数据的地表温度反演验证——以黄河源区玛曲为例[J]. 国土资源遥感, 2015,27(4):68-72.doi: 10.6046/gtzyyg.2015.04.11.
doi: 10.6046/gtzyyg.2015.04.11 url: http://www.cqvip.com/QK/91397X/201504/666795393.html
[7] Wang Y W, Song X N, Tang B H , et al. Validation of FY-2C derived land surface temperature over the source region of the Yellow River:A case study of Maqu County[J]. Remote Sensing for Land and Resources, 2015,27(4):68-72.doi: 10.6046/gtzyyg.2015.04.11.
[8] 王艳慧, 肖瑶 . 北京市1989—2010年地表温度时空分异特征分析[J]. 国土资源遥感, 2014,26(3):146-152.doi: 10.6046/gtzyyg.2014.03.24.
doi: 10.6046/gtzyyg.2014.03.24 url: http://d.wanfangdata.com.cn/Periodical/gtzyyg201403026
[8] Wang Y H, Xiao Y . A temporal-spatial variation analysis of land surface temperature in Beijing[J]. Remote Sensing for Land and Resources, 2014,26(3):146-152.doi: 10.6046/gtzyyg.2014.03.24.
[9] 毛克彪, 施建成, 李召良 , 等. 用被动微波AMSR数据反演地表温度及发射率的方法研究[J]. 国土资源遥感, 2005,17(3):14-17.doi: 10.6046/gtzyyg.2005.03.04.
doi: 10.3969/j.issn.1001-070X.2005.03.004 url: http://d.wanfangdata.com.cn/Periodical/gtzyyg200503004
[9] Mao K B, Shi J C, Li Z L , et al. The land surface temperature and emissivity retrieved from the AMSR passive microwave data[J]. Remote Sensing for Land and Resources, 2005,17(3):14-17.doi: 10.6046/gtzyyg.2005.03.04.
[10] Li L, Njoku E G, Im E , et al. A preliminary survey of radio-frequency interference over the U.S. in Aqua AMSR-E data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004,42(2):380-390.
doi: 10.1109/TGRS.2003.817195 url: http://ieeexplore.ieee.org/document/1266727/
[11] Li L.Gaiser P W, Bettenhausen M H , et al. WindSat radio-frequency interference signature and its identification over land and ocean[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(3):530-539.
doi: 10.1109/TGRS.2005.862503 url: http://ieeexplore.ieee.org/document/1597460/
[12] Njoku E G, Ashcroft P, Chan T K , et al. Global survey and statistics of radio-frequency interference in AMSR-E land observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005,43(5):938-947.
doi: 10.1109/TGRS.2004.837507 url: http://ieeexplore.ieee.org/document/1424270/
[13] Lacava T, Coviello I, Faruolo M , et al. A multitemporal investigation of AMSR-E C-band radio-frequency interference[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013,51(4), 2007-2015.
doi: 10.1109/TGRS.2012.2228487 url: http://ieeexplore.ieee.org/document/6410024/
[14] Wu Y, Weng F Z . Detection and correction of AMSR-E radio-frequency interference[J]. Acta Meteorologica Sinica, 2011,25(5):669-681.
doi: 10.1007/s13351-011-0510-0 url: http://link.springer.com/10.1007/s13351-011-0510-0
[15] Wu Y, Weng F Z . Applications of an AMSR-E RFI detection and correction algorithm in 1D-VAR over land[J]. Journal of Meteorological Research, 2014,28(4):645-655.
doi: 10.1007/s13351-014-3075-x url: http://link.springer.com/10.1007/s13351-014-3075-x
[16] Zou X L, Zhao J, Weng F Z , et al. Detection of radio-frequency interference signal over land from FY-3B microwave radiation imager(MWRI)[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012,50(12):4994-5003.
doi: 10.1109/TGRS.2012.2191792 url: http://ieeexplore.ieee.org/document/6195007/
[17] Zhao J, Zou X L, Weng F Z . WindSat radio-frequency interference signature and its identification over Greenland and Antarctic[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013,51(9):4830-4839.
doi: 10.1109/TGRS.2012.2230634 url: http://ieeexplore.ieee.org/document/6459586/
[18] 官莉, 张思勃 . 星载微波辐射计欧洲大陆无线电频率干扰分析[J]. 光学学报, 2014,34(7):277-283.
doi: 10.3788/aos201434.0728004 url: http://www.cqvip.com/QK/95626X/201407/661753554.html
[18] Guan L, Zhang S B . Source analysis of radio-frequency interference over Europe land from advanced microwave scanning radiometer-E[J]. Acta Optica Sinica, 2014,34(7):277-283.
[19] 张思勃, 官莉 . AMSR-E观测资料干扰对反演地表参数的影响[J]. 中国环境科学, 2015,35(1):260-268.
url: http://d.wanfangdata.com.cn/Periodical_zghjkx201501034.aspx
[19] Zhang S B, Guan L . Effect of AMSR-E data interference on the retrieval of land surface parameters.[J]. China Environmental Science, 2015,35(1):260-268.
[20] Boukabara S A, Garrett K, Chen W C , et al. MiRS:An all-weather 1DVAR satellite data assimilation and retrieval system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(9):3249-3272.
doi: 10.1109/TGRS.2011.2158438 url: http://ieeexplore.ieee.org/document/5958598/
[21] Weng F Z, Han Y, Delst P V, et al. JCSDA community radiative transfer model (CRTM) [C]//Proceedings 14th International ATOVS Study Conference. 2005: 217-222.
[22] Yang H, Weng F Z, Lyu L Q , et al. The FengYun-3 microwave radiation imager on-orbit verication[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(11):4552-4560.
doi: 10.1109/TGRS.2011.2148200 url: http://ieeexplore.ieee.org/document/5876315/
[1] BO Yingjie, ZENG Yelong, LI Guoqing, CAO Xingwen, YAO Qingxiu. Impacts of floating solar parks on spatial pattern of land surface temperature[J]. Remote Sensing for Natural Resources, 2022, 34(1): 158-168.
[2] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[3] YE Wantong, CHEN Yihong, LU Yinhao, Wu Penghai. Spatio-temporal variation of land surface temperature and land cover responses in different seasons in Shengjin Lake wetland during 2000—2019 based on Google Earth Engine[J]. Remote Sensing for Land & Resources, 2021, 33(2): 228-236.
[4] FAN Jiazhi, LUO Yu, TAN Shiqi, MA Wen, ZHANG Honghao, LIU Fulai. Accuracy evaluation of the FY-3C/MWRI land surface temperature product in Hunan Province[J]. Remote Sensing for Land & Resources, 2021, 33(1): 249-255.
[5] ZHOU Fangcheng, TANG Shihao, HAN Xiuzhen, SONG Xiaoning, CAO Guangzhen. Research on reconstructing missing remotely sensed land surface temperature data in cloudy sky[J]. Remote Sensing for Land & Resources, 2021, 33(1): 78-85.
[6] Bing ZHAO, Kebiao MAO, Yulin CAI, Xiangjin MENG. Study of the temporal and spatial evolution law of land surface temperature in China[J]. Remote Sensing for Land & Resources, 2020, 32(2): 233-240.
[7] Di WU, Jian CHEN, Man SHI, Bangyong QIN, Shengyang LI. Reconstruction of land surface temperature time-series datasets of FY-2F based on Savitzky-Golay filter[J]. Remote Sensing for Land & Resources, 2019, 31(2): 59-65.
[8] Junnan XIONG, Wei LI, Weiming CHENG, Chunkun FAN, Jin LI, Yunliang ZHAO. Spatial variability and influencing factors of LST in plateau area: Exemplified by Sangzhuzi District[J]. Remote Sensing for Land & Resources, 2019, 31(2): 164-171.
[9] Min YANG, Guijun YANG, Yanjie WANG, Yongfeng ZHANG, Zhihong ZHANG, Chenhong SUN. Remote sensing analysis of temporal-spatial variations of urban heat island effect over Beijing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 213-223.
[10] Ying WU, Sulin JIANG, Zhenhui WANG. Comparison and analysis of the interference identification methods for microwave measurements over snow land[J]. Remote Sensing for Land & Resources, 2018, 30(3): 40-47.
[11] Jian YU, Yunjun YAO, Shaohua ZHAO, Kun JIA, Xiaotong ZHANG, Xiang ZHAO, Liang SUN. Estimating latent heat flux over farmland from Landsat images using the improved METRIC model[J]. Remote Sensing for Land & Resources, 2018, 30(3): 83-88.
[12] Junwei HUA, Shanyou ZHU, Guixin ZHANG. Downscaling land surface temperature based on random forest algorithm[J]. Remote Sensing for Land & Resources, 2018, 30(1): 78-86.
[13] Min YANG, Guijun YANG, Xiaoning CHEN, Yongfeng ZHANG, Jingni YOU. Generation of land surface temperature with high spatial and temporal resolution based on FSDAF method[J]. Remote Sensing for Land & Resources, 2018, 30(1): 54-62.
[14] Ming SUN, Min XIE, Meihua DING, Wenlong XU, Siqi HUANG, Fei GAO. Spatio-temporal variation of urban heat island effects in Fangchenggang City, Guangxi Zhuang Autonomous Region[J]. Remote Sensing for Land & Resources, 2018, 30(1): 135-143.
[15] HE Liqin, YANG Peng, JING Xin, YAN Lei, SU Linlin. Analysis of temporal-spatial variation of heat island effect in Pearl River Delta using MODIS images and impermeable surface area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 140-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech