Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (3) : 176-181     DOI: 10.6046/gtzyyg.2017.03.26
|
Effect of radio-frequency interference on the land surface parameters retrieval from passive microwave remote sensing data
WU Ying, QIAN Bo, WANG Zhenhui
Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)/Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China
Download: PDF(4378 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Radio-frequency interference (RFI) over eastern Asia land was detected and analyzed using one dimensional variational retrieval (1-DVAR) convergence metric method from AMSR-E (the advanced microwave scanning radiometer - earth observing system) Leval 2A measurements during July 1-16, 2011. And then its influence on the retrieval of surface parameters was studied. It is found that the RFI signals are detected both at C and X band channels of AMSR-E over eastern Asia, and the signals are most densely concentrated in industrial zones, scientific research centers, metropolises, airports and highways. Moreover, RFI signals at C and X band normally do not coincide with the same distribution area. AMSR-E RFI over eastern Asia land exists along both horizontal and vertical polarization channels. Furthermore, the intensity of AMSR-E RFI varies with the earth azimuth angle of the satellite; measurements are contaminated by RFI only when the spaceborne microwave radiometer is within some earth azimuth angle range. Lastly, it is also found that retrieved land parameters have large deviations from RFI contaminated microwave measurements. Therefore, it is expected to detect even weakened RFI effectively prior to retrieving land surface parameters from passive microwave remote sensing measurements.
Keywords object-oriented      change vector analysis(CVA)      object function      change detection      sub-compartmenet     
Issue Date: 15 August 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Chungan
Liang Wenhai
Cite this article:   
LI Chungan,Liang Wenhai. Effect of radio-frequency interference on the land surface parameters retrieval from passive microwave remote sensing data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 176-181.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2017.03.26     OR     https://www.gtzyyg.com/EN/Y2017/V29/I3/176
[1] 周芳成,宋小宁,李召良.地表温度的被动微波遥感反演研究进展[J].国土资源遥感,2014,26(1):1-7.doi:10.6046/gtzyyg.2014.01.01"> doi:10.6046/gtzyyg.2014.01.01.
Zhou F C,Song X N,Li Z L.Progress of land surface temperature retrieval based on passive microwave remote sensing[J].Remote Sensing for Land and Resources,2014,26(1):1-7.doi:10.6046/gtzyyg.2014.01.01"> doi:10.6046/gtzyyg.2014.01.01.
[2] 刘 晶,马红章,杨 乐,等.基于被动微波的地表温度反演研究综述[J].遥感技术与应用,2012,27(6):812-821.
Liu J,Ma H Z,Yang L,et al.A survey of surface temperature retrieval by passive microwave remote sensing[J].Remote Sensing Technology and Application,2012,27(6):812-821.
[3] 毛克彪,施建成,李召良,等.用被动微波AMSR数据反演地表温度及发射率的方法研究[J].国土资源遥感,2005,17(3):14-17.doi:10.6046/gtzyyg.2005.03.04"> doi:10.6046/gtzyyg.2005.03.04.
Mao K B,Shi J C,Li Z L,et al.The land surface temperature and emissivity retrieved from the AMSR passive microwave data[J].Remote Sensing for Land and Resources,2005,17(3):14-17.doi:10.6046/gtzyyg.2005.03.04"> doi:10.6046/gtzyyg.2005.03.04.
[4] 鲍艳松,毛 飞,闵锦忠,等.基于FY-3B/MWRI数据的裸土区土壤湿度反演[J].国土资源遥感,2014,26(4):131-137.doi:10.6046/gtzyyg.2014.04.21"> doi:10.6046/gtzyyg.2014.04.21.
Bao Y S,Mao F,Min J Z,et al.Retrieval of bare soil moisture from FY-3B/MWRI data[J].Remote Sensing for Land and Resources,2014,26(4):131-137.doi:10.6046/gtzyyg.2014.04.21"> doi:10.6046/gtzyyg.2014.04.21.
[5] 孙知文,于鹏珊,夏 浪,等.被动微波遥感积雪参数反演方法进展[J].国土资源遥感,2015,27(1):9-15.doi:10.6046/gtzyyg.2015.01.02"> doi:10.6046/gtzyyg.2015.01.02.
Sun Z W,Yu P S,Xia L,et al.Progress in study of snow parameter inversion by passive microwave remote sensing[J].Remote Sensing for Land and Resources,2015,27(1):9-15.doi:10.6046/gtzyyg.2015.01.02"> doi:10.6046/gtzyyg.2015.01.02.
[6] 施建成,杜 阳,杜今阳,等.微波遥感地表参数反演进展[J].中国科学(地球科学),2012,42(6):814-842.
Shi J C,Du Y,Du J Y,et al.Progresses on microwave remote sensing of land surface parameters[J].Science China Earth Science,2012,55(7):1052-1078.
[7] 张廷军,晋 锐,高 峰.冻土遥感研究进展:被动微波遥感[J].地球科学进展,2009,24(10):1073-1083.
Zhang T J,Jin R,Gao F.Overview of the satellite remote sensing of frozen ground:Passive microwave sensors[J].Advances in Earth Science,2009,24(10):1073-1083.
[8] 李 芹,钟若飞.模拟AMSR-E数据的地表多参数反演[J].国土资源遥感,2011,23(1):42-47.doi:10.6046/gtzyyg.2011.01.08"> doi:10.6046/gtzyyg.2011.01.08.
Li Q,Zhong R F.Multiple surface parameters retrieval of simulated AMSR-E data[J].Remote Sensing for Land and Resources,2011,23(1):42-47.doi:10.6046/gtzyyg.2011.01.08"> doi:10.6046/gtzyyg.2011.01.08.
[9] Li L,Njoku E G,Im E,et al.A preliminary survey of radio-frequency interference over the U.S. in Aqua AMSR-E data[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(2):380-390.
[10] Njoku E G,Ashcroft P,Chan T K,et al.Global survey and statistics of radio-frequency interference in AMSR-E land observations[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(5):938-947.
[11] Lacava T,Coviello I,Faruolo M,et al.A multitemporal investigation of AMSR-E C-band radio-frequency interference[J].IEEE Transactions on Geoscience and Remote Sensing,2013,51(4):2007-2015.
[12] Zou X L,Zhao J,Weng F Z,et al.Detection of radio-frequency interference signal over land from FY-3B microwave radiation imager(MWRI)[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(12):4994-5003.
[13] 官 莉,张思勃.星载微波辐射计欧洲大陆无线电频率干扰分析[J].光学学报,2014,34(7):0728004.
Guan L,Zhang S B.Source analysis of radio-frequency interference over Europe land from advanced microwave scanning radiometer-E[J].Acta Optica Sinica,2014,34(7):0728004.
[14] Boukabara S A,Garrett K,Chen W C,et al.MiRS:An all-weather 1DVAR satellite data assimilation and retrieval system[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(9):3249-3272.
[15] Weng F Z,Han Y,van Delst P,et al.JCSDA Community radiative transfer model(CRTM)[C]//Proc.14th Int.ATOVS Study Conf.2005:217-222.
[16] Adams I S,Bettenhausen M H,Gaiser P W,et al.Identification of ocean-reflected radio-frequency interference using WindSat retrieval chi-square probability[J].IEEE Geoscience and Remote Sensing Letters,2010,7(2):406-410.
[1] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[2] PAN Jianping, XU Yongjie, LI Mingming, HU Yong, WANG Chunxiao. Research and development of automatic detection technologies for changes in vegetation regions based on correlation coefficients and feature analysis[J]. Remote Sensing for Natural Resources, 2022, 34(1): 67-75.
[3] FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 153-161.
[4] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[5] WANG Yiuzhu, HUANG Liang, CHEN Pengdi, LI Wenguo, YU Xiaona. Change detection of remote sensing images based on the fusion of co-saliency difference images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 89-96.
[6] CAI Xiang, LI Qi, LUO Yan, QI Jiandong. Surface features extraction of mining area image based on object-oriented and deep-learning method[J]. Remote Sensing for Land & Resources, 2021, 33(1): 63-71.
[7] XU Rui, YU Xiaoyu, ZHANG Chi, YANG Jin, HUANG Yu, PAN Jun. Building change detection method combining Unet and IR-MAD[J]. Remote Sensing for Land & Resources, 2020, 32(4): 90-96.
[8] DIAO Mingguang, LIU Wenjing, LI Jing, LIU Fang, WANG Yanzuo. Dynamic change detection method of vector result data in mine remote sensing monitoring[J]. Remote Sensing for Land & Resources, 2020, 32(3): 240-246.
[9] Chunsen ZHANG, Rongrong WU, Guojun LI, Weihong CUI, Chenyi FENG. High resolution remote sensing image object change detection based on box-plot method[J]. Remote Sensing for Land & Resources, 2020, 32(2): 19-25.
[10] Yuting YANG, Hailan CHEN, Jiaqi ZUO. Remote sensing monitoring of impervious surface percentage in Hangzhou during 1990—2017[J]. Remote Sensing for Land & Resources, 2020, 32(2): 241-250.
[11] Jisheng XIA, Mengying MA, Zhongren FU. Extraction of mechanical damage surface using GF-2 remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 26-32.
[12] Linyan FENG, Bingxiang TAN, Xiaohui WANG, Xinyun CHEN, Weisheng ZENG, Zhao QI. Object-oriented rapid forest change detection based on distribution function[J]. Remote Sensing for Land & Resources, 2020, 32(2): 73-80.
[13] Liping YANG, Meng MA, Wei XIE, Xueping PAN. Fusion algorithm evaluation of Landsat 8 panchromatic and multispetral images in arid regions[J]. Remote Sensing for Land & Resources, 2019, 31(4): 11-19.
[14] Yi ZHENG, Yiqiong LIN, Jian ZHOU, Weixiu GAN, Guangxuan LIN, Fanghong XU, Guanghui LIN. Mangrove inter-species classification based on ZY-3 image in Leizhou Peninsula, Guangdong Province[J]. Remote Sensing for Land & Resources, 2019, 31(3): 201-208.
[15] Hui HUANG, Xiongwei ZHENG, Genyun SUN, Yanling HAO, Aizhu ZHANG, Jun RONG, Hongzhang MA. Seismic image classification based on gravitational self-organizing map[J]. Remote Sensing for Land & Resources, 2019, 31(3): 95-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech