Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (3) : 106-112     DOI: 10.6046/gtzyyg.2018.03.15
|
A method based on harmonic model for generating synthetic GF-1 images
Jian LIAO1,2, Xingfa GU1, Yulin ZHAN1(), Yazhou ZHANG1,2, Xinyu REN1,2, Shuaiyi SHI1,2
1. Institute of Remote Sensing and Digital Earth Chinese Academy of Science, Beijing 100094, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(6670 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Remote sensing technology has been applied more widely and deeply with its development and, meanwhile, it has been asked for obtaining higher and higher spatial and temporal resolution. However, it is very difficult to overcome the contradiction between spatial resolution and temporal resolution of remote sensing images. Considering the influence of cloud, frog, snow and shadow, obtaining clear image with high spatial and high temporal resolution is impractical. To solve this problem, the authors proposed a method based on harmonic model for generating synthetic GF-1 images, which can take advantage of all available clear history images of GF-1 satellites to simulate the surface reflectance data at any specified date, so that obtaining time serial satellite images at any temporal frequency theoretically and overcoming the limits of methods based on fusion models for synthesizing satellite images become possible. Synthetic GF-1 images generated based on the harmonic model which will firstly establish a model parameterized by Julia date for every pixel of every band using all clear GF-1 time serial images since GF-1 satellite was launched and then the synthetic image at the specified day with the models would be generated. Finally, to illustrate the availability of harmonic model based method, the authors applied visual assessment and quantitative assessment. The synthetic images generated by this method were very visually similar to the real images and provide good result in quantitative assessment. Most difference of pixel values between synthetic image and real image ranged -0.03~0.03, and the root mean square error (RMSE) between synthetic image and real image ranged 0.02~0.05. The method based on harmonic model showed relatively high accuracy and stability, and effectively improved the temporal resolution of GF-1 images and could be applied in real production environment.

Keywords GF-1 satellite      image synthesizing      harmonic model      synthesize     
:  TP751.1  
Corresponding Authors: Yulin ZHAN     E-mail: zhanyl@radi.ac.cn
Issue Date: 10 September 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian LIAO
Xingfa GU
Yulin ZHAN
Yazhou ZHANG
Xinyu REN
Shuaiyi SHI
Cite this article:   
Jian LIAO,Xingfa GU,Yulin ZHAN, et al. A method based on harmonic model for generating synthetic GF-1 images[J]. Remote Sensing for Land & Resources, 2018, 30(3): 106-112.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.03.15     OR     https://www.gtzyyg.com/EN/Y2018/V30/I3/106
Fig.1  Simple, advanced and full model regression
观测数 模型
0 置为背景值
1 置为该观测值
2~11 加权平均
12~17 简单模型
18~23 高级模型
≥24 完全模型
Tab.1  Number of observation and model selection
模型 输入影像 目标影像 验证影像
谐波模型 2013年4月26日—2016年4月1日间42景干净影像 20150130
20150518
20150815
20151101
20150130
20150518
20150815
20151101
线性模型 20150106,20150225
20150309,20150525
20150602,20150820
20151008,20151204
Tab.2  Experiment-1 input and precision validation parameters
小实验编号 输入影像 模型
A 2015年内13景干净影像 简单模型
B 2014—2015年间26景干净影像 完全模型
C 2013—2016年间42景干净影像 简单模型
D 2013—2016年间42景干净影像 高级模型
E 2013—2016年间42景干净影像 完全模型
Tab.3  Experiment-2 input and model selection
Fig.2  Synthetic images generated by harmonic model and linear interpolation model and real images
Fig.3  Synthetic images and real images at 20150130
Fig.4  Histograms of difference image between synthetic image and real images
波段 模型 最小值 最大值 平均值 标准差 RMSE

波段1
谐波模型 -0.574 1 0.452 4 0.002 4 0.018 4 0.019 0
线性插值模型 -0.507 6 0.604 1 -0.009 3 0.018 7 0.019 4

波段2
谐波模型 -0.531 9 0.317 7 -0.015 1 0.021 3 0.027 5
线性插值模型 -0.703 0 0.575 5 -0.063 9 0.027 2 0.069 5

波段3
谐波模型 -0.491 0 0.401 4 -0.037 3 0.026 4 0.051 0
线性插值模型 -0.747 3 0.492 2 -0.079 4 0.030 6 0.085 1

波段4
谐波模型 -0.374 1 0.547 3 -0.003 0 0.020 5 0.022 9
线性插值模型 -0.589 7 0.578 8 -0.063 6 0.022 4 0.067 4
Tab.4  Statistics of difference between synthetic images and real images
波段 A B C D E
波段1 0.021 3 0.087 5 0.033 2 0.048 7 0.019 0
波段2 0.029 5 0.032 2 0.030 1 0.027 6 0.027 5
波段3 0.043 4 0.040 9 0.035 6 0.040 4 0.051 0
波段4 0.028 9 0.034 8 0.060 5 0.031 5 0.022 9
Tab.5  RMSE between synthetic image and real image at 20150130
波段 A B C D E
波段1 0.020 5 0.021 5 0.023 5 0.020 4 0.018 4
波段2 0.028 9 0.031 8 0.028 1 0.027 0 0.021 3
波段3 0.033 2 0.036 1 0.034 0 0.034 4 0.026 4
波段4 0.025 7 0.028 4 0.026 6 0.027 8 0.020 5
Tab.6  Standard deviation of difference between synthetic image and real image at 20150130
[1] 佃袁勇 . 基于遥感影像的变化检测研究[D]. 武汉:武汉大学, 2005.
[1] Dian Y Y . Research on Change Detection in Remote Sensing Imagery[D]. Wuhan:Wuhan University, 2005.
[2] Hansen M C, Roy D P, Lindquist E , et al. A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin[J]. Remote Sensing of Environment, 2008,112(5):2495-2513.
doi: 10.1016/j.rse.2007.11.012 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425707004774
[3] Griffiths P, Linden S V D,Kuemmerle T,et al.A pixel-based Landsat compositing algorithm for large area land cover mapping[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013,6(5):2088-2101.
doi: 10.1109/JSTARS.2012.2228167 url: http://ieeexplore.ieee.org/document/6415303/
[4] Cihlar J, Manak D, D’Iorio M .Evaluation of compositing algorithms for AVHRR data over land[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994,32(2):427-437.
doi: 10.1109/36.295057 url: http://ieeexplore.ieee.org/document/295057/
[5] Holben B N . Characteristics of maximum-value composite images from temporal AVHRR data[J]. International Journal of Remote Sensing, 1986,7(11):1417-1434.
doi: 10.1080/01431168608948945 url: http://www.tandfonline.com/doi/abs/10.1080/01431168608948945
[6] Luo Y, Trishchenko A P, Khlopenkov K V . Developing clear-sky,cloud and cloud shadow mask for producing clear-sky composites at 250-meter spatial resolution for the seven MODIS land bands over Canada and North America[J]. Remote Sensing of Environment, 2008,112(12):4167-4185.
doi: 10.1016/j.rse.2008.06.010 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425708002174
[7] Roy D P, Ju J C, Kline K , et al. Web-enabled Landsat data (WELD):Landsat ETM+ composited mosaics of the conterminous United States[J]. Remote Sensing of Environment, 2010,114(1):35-49.
doi: 10.1016/j.rse.2009.08.011 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425709002545
[8] Stoms D M, Bueno M J, Davis F W . Viewing geometry of AVHRR image composites derived using multiple criteria[J]. Photogrammetric Engineering and Remote Sensing, 1997,63(6):681-689.
doi: 10.1016/S0924-2716(97)00008-7 url: http://europepmc.org/abstract/AGR/IND20583997
[9] White J C, Wulder M A, Hobart G W , et al. Pixel-based image compositing for large-area dense time series applications and science[J]. Canadian Journal of Remote Sensing, 2014,40(3):192-212.
doi: 10.1080/07038992.2014.945827 url: http://www.tandfonline.com/doi/full/10.1080/07038992.2014.945827
[10] 邬明权, 牛铮, 王长耀 . 多源遥感数据时空融合模型应用分析[J]. 地球信息科学学报, 2014,16(5):776-783.
doi: 10.3724/SP.J.1047.2014.00776
[10] Wu M Q, Niu Z, Wang C Y . Assessing the accuracy of spatial and temporal image fusion model of complex area in South China[J]. Journal of Geo-Information Science, 2014,16(5):776-783.
[11] Davis J C . Statistics and Data Analysis in Geology[M]. 2nd ed.New York:Wiley, 1986: 646.
[12] Rayner J N . An Introduction to Spectral Analysis[M]. London:Pion Ltd., 1971: 174.
[13] Zhu Z, Woodcock C E . Continuous change detection and classification of land cover using all available Landsat data[J]. Remote Sensing of Environment, 2014,144:152-171.
doi: 10.1016/j.rse.2014.01.011 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425714000248
[14] Zhu Z, Woodcock C E, Holden C , et al. Generating synthetic Landsat images based on all available Landsat data:Predicting Landsat surface reflectance at any given time[J]. Remote Sensing of Environment, 2015,162:67-83.
doi: 10.1016/j.rse.2015.02.009 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425715000590
[15] Verbesselt J, Zeileis A, Herold M . Near real-time disturbance detection using satellite image time series[J]. Remote Sensing of Environment, 2012,123:98-108.
doi: 10.1016/j.rse.2012.02.022 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425712001150
[1] Jida PENG, Chungui ZHANG. Remote sensing monitoring of vegetation coverage by GF-1 satellite: A case study in Xiamen City[J]. Remote Sensing for Land & Resources, 2019, 31(4): 137-142.
[2] Chen GAO, Jian XU, Dan GAO, Lili WANG, Yeqiao WANG. Retrieval of concentration of total suspended matter from GF-1 satellite and field measured spectral data during flood period in Poyang Lake[J]. Remote Sensing for Land & Resources, 2019, 31(1): 101-109.
[3] WANG Ruijun, DONG Shuangfa, SUN Yongbin, LI Jingyue. Remote sensing interpretation and application of the geological unit of Suolake area in Xinjiang based on GF-1 satellite data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 137-143.
[4] ZHANG Kun, LI Xiaomin, MA Shibin, LIU Shiying, LI Shenghui. Application of GF-1 image to geological disaster survey in Cosibsumgy village on Sino-India border area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 139-148.
[5] LU Yunge, LIU Cai, WANG Jiao. Integrated solutions for mine remote sensing monitoring based on domestic satellite images: A case study of Tibet[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 85-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech