Please wait a minute...
 
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (1) : 38-44     DOI: 10.6046/gtzyyg.2019337
|
Construction of tidal flat DEM based on multi-algorithm waterline extraction
LI Tianqi(), WANG Jianchao, WU Fang, ZHAO Zheng, ZHANG Wenkai
China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
Download: PDF(4902 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The waterline method is an effective way to obtain a large area of silty tidal flat terrain. Accurate extraction of the waterline is the key to the construction of the tidal flat digital elevation model (DEM). Affected by the tidal conditions and the surface of the tidal flat, the waterlines in different satellite images have large differences in spectrum and texture. It is difficult to extract waterlines accurately using a single method. In this paper, a tidal flat DEM construction method based on multi-algorithm waterline extraction is proposed. The waterlines are classified into four categories according to the tide conditions and are extracted by edge detection, threshold segmentation, object-based segmentation, and improved watershed algorithm respectively. Then, combined with the instantaneous tide level of waterlines, the tidal flat DEM is constructed. In this paper, the method was verified using Laizhou Bay as the research area. There was a high correlation between the inversion elevation and the measured elevation, R 2=0.86, and relative error was between 0.31~0.78 m. It is shown that the method in this paper can effectively obtain the approximate topography of the tidal flat.

Keywords waterline extraction      silty tidal flat      digital elevation model      watershed algorithm     
ZTFLH:  TP79  
Issue Date: 18 March 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tianqi LI
Jianchao WANG
Fang WU
Zheng ZHAO
Wenkai ZHANG
Cite this article:   
Tianqi LI,Jianchao WANG,Fang WU, et al. Construction of tidal flat DEM based on multi-algorithm waterline extraction[J]. Remote Sensing for Land & Resources, 2021, 33(1): 38-44.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019337     OR     https://www.gtzyyg.com/EN/Y2021/V33/I1/38
Fig.1  Location map of the study area
Fig.2  Classification rules of waterline
单一滩面弱
边缘水边线
复杂滩面弱
边缘水边线
单一滩面强
边缘水边线
复杂滩面强
边缘水边线
20170303 20170223 20170429 20170227
20170417 20170310 20170528 20170315
20170421 20170507 20170531 20170609
20170430 20170713 20170626
20170520 20170712
20170617
Tab.1  Waterline classification results
Fig.3  Waterline extraction result based on Canny edge detection
Fig.4  Waterline extraction result based on NDWI threshold segmentation
Fig.5  Waterline extraction result based on object-based segmentation
Fig.6  Flow chart of improved watershed algorithm
Fig.7  Waterline extraction result based on improved watershed algorithm
影像时间 瞬时潮位 影像时间 瞬时潮位
20170223 147.59 20170507 154.99
20170227 179.05 20170520 71.92
20170303 68.87 20170528 100.99
20170310 185.85 20170531 54.04
20170315 123.82 20170609 154.58
20170417 67.65 20170617 56.98
20170421 89.44 20170626 113.50
20170429 93.90 20170712 109.10
20170430 80.81 20170713 105.41
Tab.2  Instantaneous tidal level of waterlines(cm)
Fig.8  Selection result of waterlines
Fig.9  Inversion result of tidal flat DEM
Fig.10  Distribution of verification points
Fig.11  Correlation analysis
[1] 王宝灿, 黄仰松. 海洋动力地貌[M]. 上海: 华东师范大学出版社, 1989: 217-236.
[1] Wang B C, Huang Y S. Coastal dynamic geomorphology[M]. Shanghai: East China Normal University Press, 1989: 217-236.
[2] 杨世伦. 海洋环境和地貌过程[M]. 北京: 海洋出版社, 2003: 240.
[2] Yang S L. Coastal environment and geomorphology process[M]. Beijing: Ocean Press, 2003: 240.
[3] Shi Z, Chen J Y. Morphodynamics and sediment dynamics on intertidal mudflats in China (1961—1994)[J]. Continental Shelf Research, 1996,16(15):1909-1926.
doi: 10.1016/0278-4343(95)00059-3 url: https://linkinghub.elsevier.com/retrieve/pii/0278434395000593
[4] 任明达, 柳林, 王安龙. 粉砂淤泥质潮滩的多波段与多时相卫片解译[J]. 海洋学报, 1990,12(6):741-748.
[4] Ren M D, Liu L, Wang A L. Interpretation of multi-band and multi-temporal satellites for silt and muddy tidal flats[J]. Acta Oceanologica Sinica, 1990,12(6):741-748.
[5] 时钟, 陈吉余, 虞志英. 中国淤泥质潮滩沉积研究的进展[J]. 地球科学进展, 1996,11(6):555-562.
[5] Shi Z, Chen J Y, Yu Z Y. Sedimentation on the intertidal mudflat in China:An overview[J]. Advance in Earth Science, 1996,11(6):555-562.
[6] 郑宗生, 周云轩, 刘志国, 等. 基于水动力模型及遥感水边线方法的潮滩高程反演[J]. 长江流域资源与环境, 2008,17(5):756-760.
[6] Zheng Z S, Zhou Y X, Liu Z G, et al. DEM reconstruction based on hydrodynamic model and waterline method[J]. Resources and Environment in the Yangtze Basin, 2008,17(5):756-760.
[7] 恽才兴. 海岸带及近海卫星遥感综合应用技术[M]. 北京: 海洋出版社, 2005.
[7] Yun C X. Comprehensive application technology of satellite remote sensing in coastal zone and offshore[M]. Beijing: Ocean Press, 2005.
[8] 钱一婧, 张鹰, 李洪灵, 等. 常用边缘检测算法在遥感影像水边线提取比较[J]. 人民长江, 2008,39(13):95-97.
[8] Qian Y J, Zhang Y, Li H L, et al. Comparison of common edge detection algorithms for waterline extraction in remote sensing images[J]. Yangtze River, 2008,39(13):95-97.
[9] Ryu J H, Won J S, Min K D. Waterline extraction from Landsat TM data in a tidal flat:A case study in Gomso Bay,Korea[J]. Remote Sensing of Environment, 2002,83(3):442-456.
[10] Chen A J, Chen C F, Chen K S. Investigation of shoreline change and migration along Wai-San-Ding-Zou barrier island,Central Western Taiwan[C]// 1995 International Geoscience and Remote Sensing Symposium.IEEE, 1995,3:2097-2099.
[11] 李林茹, 高双喜, 曹淑服. 基于小波变换和梯度矢量流Snake模型的ERS-1 SAR图像的海岸线探测[J]. 河北工业科技, 2004,21(4):24-26.
[11] Li L R, Gao S X, Cao S F. Detection of shoreline in SAR image based on wavelet and GVF Snake model[J]. Hebei Journal of Industrial Science and Technology, 2004,21(4):24-26.
[12] 鞠超, 吉长东, 荆林海, 等. 基于GF-1遥感影像面向对象的海岸线自动提取——以秦皇岛为例[J]. 测绘与空间地理信息, 2017,40(12):30-33.
[12] Ju C, Ji C D, Jin L H, et al. The coastline automatic extraction research of object-oriented based on the GF-1 remote sensing image:A case in Qinhuangdao[J]. Geomatics and Spatial Information Technology, 2017,40(12):30-33.
[13] Mason D C, Davenport I J, Flather R A, et al. A sensitivity analysis of the waterline method of constructing a digital elevation model for intertidal areas in ERS SAR scene of eastern England[J]. Estuarine Coastal and Shelf Science, 2001,53(6):759-778.
[14] 沈芳, 郜昂, 吴建平, 等. 淤泥质潮滩水边线提取的遥感研究及DEM构建——以长江口九段沙为例[J]. 测绘学报, 2008,37(1):106-111.
[14] Shen F, Gao A, Wu J P, et al. A remotely sensed approach on waterline extraciton of silty tidal construction:A case study in Jiuduansha Shoal of Yangtze River[J]. Acta Geodaetica et Cartographica Sinica, 2008,37(1):106-111.
[15] 穆敬, 吴迪, 朱穆华, 等. 基于BJ-1影像和高分辨率潮汐网格的潮滩DEM构建[J]. 海洋测绘, 2018,38(1):39-42.
[15] Mu J, Wu D, Zhu M H, et al. Tidal land digital elevation model establishment based on Beijing-1 small satellite image and high-resolution tidal level grid[J]. Hydrographic Surveying and Charting, 2018,38(1):39-42.
[16] 吴迪, 孙晶, 黄文骞, 等. 多源多算法遥感水边线提取适配模型研究[J]. 海洋测绘, 2014,34(4):50-54.
[16] Wu D, Sun J, Huang W Q, et al. Correlation model of waterline detection concerning multi-source images and algorithms[J]. Hydrographic Surveying and Charting, 2014,34(4):50-54.
[17] 梁立, 刘庆生, 刘高焕, 等. 基于遥感影像的海岸线提取方法综述[J]. 地球信息科学学报, 2018,20(12):1745-1755.
[17] Liang L, Liu Q S, Liu G H, et al. Review of coastline extraction methods based on remote sensing images[J]. Journal of Geo-Information Science, 2018,20(12):1745-1755.
[18] 段瑞玲, 李庆祥, 李玉和. 图像边缘检测方法研究综述[J]. 光学技术, 2005,31(3):415-419.
[18] Duan R L, Li Q X, Li Y H. Summary of image edge detection[J]. Optical Technique, 2005,31(3):415-419.
[19] Canny J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986,8(6):679-698.
pmid: 21869365 url: https://www.ncbi.nlm.nih.gov/pubmed/21869365
[20] McFeeters S K. The use of the normalized difference water index(NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996,17(7):1425-1432.
[21] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems,Man,and Cybernetics, 2007,9(1):62-66.
[22] 苏伟, 李京, 陈云浩, 等. 基于多尺度影像分割的面向对象城市土地覆被分类研究——以马来西亚吉隆坡市城市中心区为例[J]. 遥感学报, 2007,11(4):521-530.
[22] Su W, Li J, Chen Y H, et al. Object oriented urban land-cover classification of multi-scale image segmentation method:A case study in Kuala Lumpur city center,Malaysia[J]. Journal of Remote Sensing, 2007,11(4):521-530.
[1] LYU Yongqiang, YU Xinwei, YANG Shuo, ZHENG Xinqi. Identification of the polycentric urban structure based on multi-source geographic big data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 132-139.
[2] Lei MENG, Chao LIN. Discussion on quality inspection and solution of DEM generated by airborne LiDAR technology[J]. Remote Sensing for Land & Resources, 2020, 32(1): 7-12.
[3] Lei DU, Jie CHEN, Minmin LI, Xiongwei ZHENG, Jing LI, Zihong GAO. The application of airborne LiDAR technology to landslide survey: A case study of Zhangjiawan Village landslides in Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2019, 31(1): 180-186.
[4] YU Zhoulu, WANG Wenchao, RONG Yi, SHEN Zhangquan. Sub-pixel mapping of land cover using sub-pixel swapping algorithm and topographic data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 88-97.
[5] ZHANG Wei, YAO Qi, YANG Jinzhong, YU Hao, WU Jianyong. Geomorphic characteristics of segmental activities of the Longmenshan fault zone since late Cenozoic[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 113-121.
[6] GAO Mingxing, LIU Shaofeng. Pleistocene paleosurface reconstruction and Holocen erosion quantity calculation for Guide—Gonghe—Tongde basin complex, Qinghai[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(1): 99-104.
[7] NI Wen-Jian, GUO Zhi-Feng, SUN Guo-Qing. RESEARCHES ON THE DIGITAL ELEVATION MODEL
EXTRACTION METHOD BASED ON ALOS PALSAR DATA
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(3): 19-23.
[8] WU Fang, ZHENG Xiong-Wei, WANG Jian-Chao, GUO Da-Hai, ZHANG Zong-Gui. THE CONSTRUCTION OF 1∶10 000 ORTHOPHOTO MAPS BASED ON POS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2007, 19(4): 54-56.
[9] CHEN BO, ZHANG You-Jing, CHEN Liang. SEGMENTATION OF THE REMOTE SENSING IMAGE BASED ON METHOD
OF LABELING WATERSHED ALGORITHM AND REGIONAL MERGING
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2007, 19(2): 35-38.
[10] HU Wen-Ying, JIAO Yuan-Mei. A METHOD FOR RECOVERY OF REMOTE SENSING DATA BASED ON THE DIGITAL ELEVATION MODEL[J]. REMOTE SENSING FOR LAND & RESOURCES, 2007, 19(1): 41-43.
[11] L Jie-tang, WANG Zhi-hua, LIU Qong . A STUDY OF DEM EXTRACTION BY USING AIRPHOTOS UNDER OEAD PLATFORM[J]. REMOTE SENSING FOR LAND & RESOURCES, 2002, 14(1): 43-46.
[12] SHAN Xin-jian, LIU Hao . DETECTING DIGITAL ELEVATION MODEL(DEM) BY INSAR TECHNIQUE[J]. REMOTE SENSING FOR LAND & RESOURCES, 2001, 13(2): 43-47.
[13] Di Kaichang, Wang Runsheng, Zhang Youying . AUTOMATIC DIGITAL ELEVATION EXTRACTION FROM REMOTE SENSING IMAGE IN PERSONAL COMPUTER[J]. REMOTE SENSING FOR LAND & RESOURCES, 1996, 8(3): 56-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech