Please wait a minute...
 
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (1) : 30-37     DOI: 10.6046/gtzyyg.2020167
|
Dynamic monitoring of urban black-odor water bodies based on GF-2 image
HU Guoqing1(), CHEN Donghua1,2, LIU Congfang3, XIE Yimei1, LIU Saisai2, LI Hu1()
1. College of Geography and Tourism, Anhui Normal University, Wuhu 241000, China
2. College of Computer and Information Engineering, Chuzhou University, Chuzhou 239000, China
3. College of Geography Science and Tourism,Xinjiang Normal University, Urumqi 830001, China
Download: PDF(5462 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

At present, the remote sensing identification of urban black-odor water bodies is in the preliminary stage of algorithm; due to the influence of water depth, shadow and other factors, the accuracy is low in practical applications, and there is little research on the long-term dynamic monitoring of black-odor water bodies. In this study, the Jiujiang District of Wuhu was chosen as a research area to analyze the causes and apparent characteristics of black-odor water bodies. For single-band threshold method, band difference method, normalized index method and slope index method, threshold correction was performed based on GF-2 images, the accuracy was evaluated, combined with the visual interpretation of the black-odor water bodies for dynamic monitoring at the same time. The results are as follows: ① The occurrence of black and odor in the water body is usually accompanied by features such as color abnormality, river siltation, and secondary environmental problems. ②The band difference method has the best recognition effect in the single recognition algorithm, and the total accuracy is 87.5%. ③ The high spatial resolution feature of GF-2 improves the efficiency and accuracy of visual interpretation, which can effectively reduce the interference of water depth and building shadows on its remote sensing recognition; compared with the use of a single algorithm, it further improves the recognition accuracy and reliability of dynamic monitoring. ④ The four GF-2 images from 2014 to 2020 were used to extract the areas of black-odor water bodies in the main urban area of Jiujiang District, which are 0.313 km2, 0.152 km2, 0.069 km2, and 0.008 km2 respectively. The results show that the black and odor phenomenon in the water body of Jiujiang District has been gradually improved, but the black and odor phenomenon in the water system of Shenshan Park is still serious.

Keywords GF-2      black-odor water bodies      dynamic monitoring      Wuhu     
ZTFLH:  TP79  
Corresponding Authors: LI Hu     E-mail: 2221001119@qq.com;lihu2881@aliyun.com
Issue Date: 18 March 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guoqing HU
Donghua CHEN
Congfang LIU
Yimei XIE
Saisai LIU
Hu LI
Cite this article:   
Guoqing HU,Donghua CHEN,Congfang LIU, et al. Dynamic monitoring of urban black-odor water bodies based on GF-2 image[J]. Remote Sensing for Land & Resources, 2021, 33(1): 30-37.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020167     OR     https://www.gtzyyg.com/EN/Y2021/V33/I1/30
载荷 谱段号 谱段范围/μm 空间分辨率/m

全色多光谱相机
1 0.45~0.90 1
2 0.45~0.52 4
3 0.52~0.59
4 0.63~0.69
5 0.77~0.89
Tab.1  GF-2 load parameters
Fig.1  Comparision of remote sensing images before and after fusion
Fig.2  Comparison of characteristics between black and odorous water body and general water body
Fig.3  Sample distribution
Fig.4  Algorithm modeling results
算法 公式 阈值
修正前 修正后
单波段阈值法 I1=Rrs(G)T1 0.019 0sr-1 0.144 3sr-1
波段差值法 I2=Rrs(G)-Rrs(B)T2 0.003 6sr-1 0.002 2sr-1
归一化指数法 I3=Rrs(G)-Rrs(R)Rrs(B)+Rrs(G)+Rrs(R)T3 0.065 0.064 2
斜率指数法 I4=|Rrs(G)-Rrs(B)|Δλ1·|Rrs(G)-Rrs(R)|Δλ2T4 0.005sr-2 0.011 1sr-2
Tab.2  Formula and threshold selection
水质
类型
单波段阈值法 波段差值法 归一化指数法 斜率指数法
一般
水体
黑臭
水体
一般
水体
黑臭
水体
一般
水体
黑臭
水体
一般
水体
黑臭
水体
一般水体 12 0 21 3 12 3 17 3
黑臭水体 12 24 3 21 12 21 7 21
Tab.3  Sample discrimination statistics
指标 公式
用户精度 U=n正确识别数n总识别数×100%
产品精度 P=n正确识别数n实际识别数×100%
总精度 P0=n总正确识别数n总数×100%
Kappa系数 Kappa=P0-Pe1-Pe
Tab.4  Accuracy evaluation formula
指标 单波段
阈值法
波段
差值法
归一化
指数法
斜率
指数法
用户精度/% 100 87.5 87.5 87.5
产品精度/% 67 87.5 64 75
总精度/% 75 87.5 68.7 79
Kappa系数 0.5 0.75 0.375 0.58
Tab.5  Accuracy statistics
Fig.5-1  Single algorithm recognition results
Fig.5-2  Single algorithm recognition results
Fig.6  Comparison before and after Dong River rectification
Fig.7  Water depth and shadow interference

名称 水质情况
名称 水质情况
2014年 2016年 2018年 2020年 2014年 2016年 2018年 2020年
1 水岸星城排水渠 黑臭 黑臭 一般 一般 8 保兴垾赤铸山路支沟 黑臭 黑臭 黑臭 一般
2 东河 黑臭 黑臭 黑臭 一般 9 保兴垾鸠兹家苑支沟 黑臭 黑臭 一般 一般
3 上、下新塘水系 黑臭 黑臭 一般 一般 10 保兴垾九华北路支沟 一般 黑臭 黑臭 一般
4 火石埂东沟 黑臭 黑臭 一般 一般 11 弋江站主沟 黑臭 黑臭 轻微 一般
5 火石埂西沟 黑臭 黑臭 一般 一般 12 大阳垾湿地公园 黑臭 少量黑臭 部分水
体反黑
一般
6 旭日天都水系 黑臭 黑臭 黑臭 一般 13 河清路明渠 黑臭 黑臭 一般 一般
7 大公沟 黑臭 一般 部分水
体反黑
一般 14 神山公园水系 黑臭 黑臭 黑臭 黑臭
Tab.6  Dynamic monitoring results of black and odorous water
[1] 国务院. 国务院关于印发水污染防治行动计划的通知[EB/OL].(2015-04-16)[2020-06-06]. http://www.gov.cn/zhengce/content/2015-04/16/content_9613.htm.
url: http://www.gov.cn/zhengce/content/2015-04/16/content_9613.htm
[1] The State Council. Action plan for water pollution control[EB/OL].(2015-04-16)[2020-06-06]. http://www.gov.cn/zhengce/content/2015-04/16/content_9613.htm.
url: http://www.gov.cn/zhengce/content/2015-04/16/content_9613.htm
[2] 赵少华, 王桥, 游代安, 等. 高分辨率卫星在环境保护领域中的应用[J]. 国土资源遥感, 2015,27(4):1-7.doi: 10.6046/gtzyyg.2015.04.01.
[2] Zhao S H, Wang Q, You D A, et al. Application of high resolution satellites to environmental protection[J]. Remote Sensing for Land and Resources, 2015,27(4):1-7.doi: 10.6046/gtzyyg.2015.04.01.
[3] Nichol J E. Remote sensing of tropical blackwater rivers:A method for environmental water qualityanalysis[J]. Applied Geography, 1993,13(2):153-168.
[4] Zhao J, Hu C, Lapointe B, et al. Satellite-observed black water events off southwest Florida:Implications for coral reef health in the Florida keys national marine sanctuary[J]. Remote Sensing, 2013,5(1):415-431.
[5] 靳海霞, 潘健, 基于高分二号卫星融合数据的城镇黑臭水体遥感监测研究[J]. 国土资源科技管理, 2017,34(4):107-117.
[5] Jin H X, Pan J. Urabn black-odor water body remote sensing monitoring based on GF-2 satellite data fusion[J]. Scientific and Technological Management of Land and Resources, 2017,34(4):107-117.
[6] 温爽. 基于GF-2影像的城市黑臭水体遥感识别——以南京市为例[D]. 南京:南京师范大学, 2018.
[6] Wen S. Remote sensing recognition of urban black and odorous water bodies based on GF-2 images:A case study in Nanjing[D]. Nanjing:Nanjing Normal University, 2018.
[7] 温爽, 王桥, 李云梅, 等. 基于高分影像的城市黑臭水体遥感识别:以南京为例[J]. 环境科学, 2018,39(1):57-67.
[7] Wen S, Wang Q, Li Y M, et al. Remote sensing identification of urban black-odor water bodies based on high-resolution images:A case study in Nanjing[J]. Environmental Science, 2018,39(1):57-67.
[8] 姚月. 基于GF多光谱影像的城市黑臭水体识别模型研究[D]. 兰州:兰州交通大学, 2018.
[8] Yao Y. Study on urban black-odor water identification model based on Gaofen multispectral images[D]. Lanzhou:Lanzhou Jiaotong University, 2018.
[9] 姚月, 申茜, 朱利, 等. 高分二号的沈阳市黑臭水体遥感识别[J]. 遥感学报, 2019,23(2):230-242.
[9] Yao Y, Shen Q, Zhu L, et al. Remote sensing identification of urban black-odor water bodies in Shenyang City based on GF-2 image[J]. Journal of Remote Sensing, 2019,23(2):230-242.
[10] 七珂珂, 申茜, 罗小军, 等. 基于GF-2影像的沈阳市黑臭水体遥感分级识别[J]. 遥感技术与应用, 2020,35(2):424-434.
[10] Qi K K, Shen Q, Luo X J, et al. Remote sensing classification and recognition of black and odorous water in Shenyang based on GF-2 image[J]. Remote Sensing Technology and Application, 2020,35(2):424-434.
[11] 七珂珂. 基于多源高分影像的城市黑臭水体遥感分级识别[D]. 成都:西南交通大学, 2019.
[11] Qi K K. Remote sensing classification and recognition of urban black and odorous water based on multi-source high resolution image[D]. Chengdu:Southwest Jiaotong University, 2019.
[12] 住房城乡建设部办公厅. 环境保护部办公厅关于公布全国城市黑臭水体排查情况的通知[EB/OL].(2016-02-05)[2020-06-06]. http://www.mohurd.gov.cn/wjfb/201602/t20160219_226677.html.
url: http://www.mohurd.gov.cn/wjfb/201602/t20160219_226677.html
[12] Office of the Ministry of Housing and Urban-Rural Development. Investigation of black and odorous waterbodies in cities nationwide[EB/OL].(2016-02-05)[2020-06-06]. http://www.mohurd.gov.cn/wjfb/201602/t20160219_226677.html.
url: http://www.mohurd.gov.cn/wjfb/201602/t20160219_226677.html
[13] 安徽省人民政府. 安徽省人民政府关于印发安徽省水污染防治工作方案的通知[EB/OL].(2016-01-15)[2020-06-06]. http://www.ah.gov.cn/public/1681/7929561.html.
url: http://www.ah.gov.cn/public/1681/7929561.html
[13] Anhui Provincial People’s Government. Anhui Province water pollution prevention work plan[EB/OL].(2016-01-15)[2020-06-06]. http://www.ah.gov.cn/public/1681/7929561.html.
url: http://www.ah.gov.cn/public/1681/7929561.html
[14] 中国资源卫星应用中心. 高分二号[EB/OL].(2014-10-15)[2020-06-06]. http://218.247.138.119/CN/Satellite/3128.shtml.
url: http://218.247.138.119/CN/Satellite/3128.shtml
[14] China Centre for Resource Satellite Data and Application. GF-2[EB/OL].(2014-10-15)[2020-06-06]. http://218.247.138.119/CN/Satellite/3128.shtml.
url: http://218.247.138.119/CN/Satellite/3128.shtml
[15] 李佳琦, 戴华阳, 李家国, 等. 城区重度污染水体遥感识别研究[J]. 测绘通报, 2018(5):54-58.
[15] Li J Q, Dai H Y, Li J G, et al. Remote sensing identification of heavily polluted water in urban areas[J]. Bulletin of Surveying and Mapping, 2018(5):54-58.
[1] WANG Chunxia, ZHANG Jun, LI Yixu, PHOUMILAY. The construction and verification of a water index in the complex environment based on GF-2 images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 50-58.
[2] GAO Junhua, ZOU Lianxue, LONG Huan, CHU Shuitao. Analysis on characteristics of mine geological environment and ecological restoration changes in Jilin Province based on dynamic remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(3): 240-248.
[3] ERPAN Anwar, MAMAT Sawut, MAIHEMUTI Balati. Recognition of cotton distribution based on GF-2 images and Unet model[J]. Remote Sensing for Natural Resources, 2022, 34(2): 242-250.
[4] LIU Mingxing, LIU Jianhong, MA Minfei, JIANG Ya, ZENG Jingchao. Monitoring of Zanthoxylum bungeanum Maxim planting using GF-2 PMS images and the random forest algorithm: A case study of Linxia, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 218-229.
[5] LONG Zehao, ZHANG Tianyuan, XU Wei, QIN Qiming. Development of farmland drought remote sensing dynamic monitoring system based on Android[J]. Remote Sensing for Land & Resources, 2021, 33(2): 256-261.
[6] CHEN Shuai, ZHAO Wenyu, LIAO Zhongping. Remote sensing identification of black-odor water bodies: A review[J]. Remote Sensing for Land & Resources, 2021, 33(1): 20-29.
[7] Wenya LIU, Anzhi YUE, Jue JI, Weihua SHI, Ruru DENG, Yeheng LIANG, Longhai XIONG. Urban green space extraction from GF-2 remote sensing image based on DeepLabv3+ semantic segmentation model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 120-129.
[8] Jisheng XIA, Mengying MA, Zhongren FU. Extraction of mechanical damage surface using GF-2 remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 26-32.
[9] Linyan FENG, Bingxiang TAN, Xiaohui WANG, Xinyun CHEN, Weisheng ZENG, Zhao QI. Object-oriented rapid forest change detection based on distribution function[J]. Remote Sensing for Land & Resources, 2020, 32(2): 73-80.
[10] Jianyu LIU, Ling CHEN, Wei LI, Genhou WANG, Bo WANG. Application of the theory of structural hierarchy to the remote sensing geology[J]. Remote Sensing for Land & Resources, 2019, 31(3): 166-173.
[11] Feng FU, Xinjie WANG, Jin WANG, Na WANG, Jihong TONG. Tree species and age groups classification based on GF-2 image[J]. Remote Sensing for Land & Resources, 2019, 31(2): 118-124.
[12] Jing LI, Qiangqiang SUN, Ping ZHANG, Danfeng SUN, Li WEN, Xianwen LI. A study of auxiliary monitoring in iron and steel plant based on multi-temporal thermal infrared remote sensing[J]. Remote Sensing for Land & Resources, 2019, 31(1): 220-228.
[13] Chuanping XUE, Zhihai GAO, Bin SUN, Changlong LI, Yan WANG, Yuanyuan ZHANG. Research on high resolution remote sensing recognition method of elm sparse forest in Otindag sandy land[J]. Remote Sensing for Land & Resources, 2018, 30(4): 74-81.
[14] Jie XIANG, Jianping CHEN, Shi LI, Zili LAI, Haozhong HUANG, Jing LIU, Shuai XIE. Research on application of unmanned aerial vehicle technology to dynamic monitoring of reserves in the Shouyun iron mine, Beijing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 224-229.
[15] Lijuan WANG, Xiao JIN, Hujun JIA, Yao TANG, Guochao MA. Change detection for mine environment based on domestic high resolution satellite images[J]. Remote Sensing for Land & Resources, 2018, 30(3): 151-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech