Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (4) : 88-97     DOI: 10.6046/gtzyyg.2017.04.14
|
Sub-pixel mapping of land cover using sub-pixel swapping algorithm and topographic data
YU Zhoulu1, WANG Wenchao2, RONG Yi2, SHEN Zhangquan1
1. College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China;
2. Hangzhou Federation of Land Planning and Design Consulting Co. Ltd., Hangzhou 310030, China
Download: PDF(6488 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  When remote sensing images are used to provide information for land cover mapping, it is negatively affected by the occurrence of mixed pixels in the remote sensing images, particularly in the case of coarse spatial resolutions. Soft classification and super-resolution(sub-pixel) mapping techniques can solve this kind of problems. The pixel-swapping(PS)algorithm is a simple and efficient technique for sub-pixel mapping. However, its computation is inefficient and yields poor mapping accuracy when the super-resolution scale factor (S)is large. A possible reason for this is that it only relies on the information from the fraction images. In this study, the digital elevation model(DEM) and their derivative data are employed as supplementary information for the PS algorithm so as to improve super-resolution mapping accuracy. Some conclusions have been reached: ① The sub-pixel mapping accuracy could be improved with the assistance of the DEM even if the scale factor is large; ② The mapping accuracy by incorporating both elevation and slope information is better than that of using elevation or slope data alone; ③ Mapping accuracy is less sensitive to the number of neighbors when scale factor is large;④ The computing efficiency is improved when incorporating DEM in pixel-swapping. Thus, it is feasible to use DEM as supplemental information for sub-pixel mapping.
Keywords Hyperion dimensional reduction      IKONOS fusion      segmentation      spectral characteristics      classification     
:  TP751.1  
Issue Date: 04 December 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Xiaofang
Cite this article:   
SUN Xiaofang. Sub-pixel mapping of land cover using sub-pixel swapping algorithm and topographic data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 88-97.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2017.04.14     OR     https://www.gtzyyg.com/EN/Y2017/V29/I4/88
[1] Tatem A J,Lewis H G,Atkinson P M,et al.Super-resolution land cover pattern prediction using a Hopfield neural network[J].Remote Sensing of Environment,2002,79(1):1-14.
[2] Kasetkasem T,Arora M K,Varshney P K.Super-resolution land cover mapping using a Markov random field based approach[J].Remote Sensing of Environment,2005,96(3/4):302-314.
[3] Foody G M.Remote Sensing Image Analysis:Including the Spatial Domain[M].Norwell,MA:Kluwer,2004:37-49.
[4] Mertens K C,Verbeke L P C,Ducheyne E I,et al.Using genetic algorithms in sub-pixel mapping[J].International Journal of Remote Sensing,2003,24(21):4241-4247.
[5] 任 武,葛 咏.遥感影像亚像元制图方法研究进展综述[J].遥感技术与应用,2011,26(1):33-44.
Ren W,Ge Y.Progress on sub-pixel mapping methods for remotely sensed images[J].Remote Sensing Technology and Application,2011,26(1):33-44.
[6] sensed images[M]//Kemp Z.Innovations in GIS IV.London:Taylor and Francis,1997:166-180.
[7] Atkinson P M.Super-resolution target mapping from soft-classified remotely sensed imagery[C]//Proceedings of the 5th International Conference on GeoComputation.Leeds,UK:University of Leeds,2001.
[8] Atkinson P M.Sub-pixel target mapping from soft-classified,remotely sensed imagery[J].Photogrammetric Engineering and Remote Sensing,2005,71(7):839-846.
[9] Foody G M.Sharpening fuzzy classification output to refine the representation of sub-pixel land cover distribution[J].International Journal of Remote Sensing,1998,19(13):2593-2599.
[10] Grossa H N,Schotta J R.Application of spectral mixture analysis and image fusion techniques for image sharpening[J].Remote Sensing of Environment,1998,63(2):85-94.
[11] Schneider W.Land use mapping with subpixel accuracy from Landsat TM image data[C]//Proceedings of 25th International Symposium,Remote Sensing and Global Environmental Change.Austria,Graz:[s.n.],1993,2:155-161.
[12] Tatem A J,Lewis H G,Atkinson P M,et al.Super-resolution target identification from remotely sensed images using a Hopfield neural network[J].IEEE Transaction on Geoscience and Remote Sensing,2001,39(4):781-796.
[13] Nguyen M Q,Atkinson P M,Lewis H G.Superresolution mapping using a Hopfield neural network with fused images[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(3):736-749.
[14] Ruiz C P,López F J A.Restoring SPOT images using PSF-derived deconvolution filters[J].International Journal of Remote Sensing,2002,23(12):2379-2391.
[15] Verhoeye J.De Wulf R.Land cover mapping at sub-pixel scales using linear optimization techniques[J].Remote Sensing of Environment,2002,79(1):96-104.
[16] Mertens K C,Verbeke L P C,Westra T,et al.Sub-pixel mapping and sub-pixel sharpening using neural network predicted wavelet coefficients[J].Remote Sensing of Environment,2004,91(2):225-236.
[17] Mertens K C,De Baets B,Verbeke L P C,et al.A sub-pixel mapping algorithm based on sub-pixel/pixel spatial attraction models[J].International Journal of Remote Sensing,2006,27(15):3293-3310.
[18] Shen Z Q,Qi J G,Wang K.Modification of pixel-swapping algorithm with initialization from a sub-pixel/pixel spatial attraction model[J].Photogrammetric Engineering and Remote Sensing,2009,75(5):557-567.
[19] 沈掌泉,虞舟鲁.基于单亲遗传算法和子像元/像元空间吸引模型的亚像元制图研究[J].遥感技术与应用,2015,30(1):129-134.
Shen Z Q,Yu Z L.Sub-pixel mapping with partheno-genetic algorithm and sub-pixel/pixel spatial attraction model[J].Remote Sensing Technology and Application,2015,30(1):129-134.
[20] Muslim A M,Foody G M,Atkinson P M.Localized soft classification for super-resolution mapping of the shoreline[J].International Journal of Remote Sensing,2006,27(11):2271-2285.
[21] Thornton M W,Atkinson P M,Holland D A.Sub-pixel mapping of rural land cover objects from fine spatial resolution satellite sensor imagery using super-resolution pixel-swapping[J].International Journal of Remote Sensing,2006,27(3):473-491.
[22] Nguyen M Q,Atkinson P M,Lewis H G.Superresolution mapping using a Hopfield neural network with LiDAR data[J].IEEE Geoscience and Remote Sensing Letters,2005,2(3):366-370.
[1] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[2] SHI Feifei, GAO Xiaohong, XIAO Jianshe, LI Hongda, LI Runxiang, ZHANG Hao. Classification of wolfberry planting areas based on ensemble learning and multi-temporal remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(1): 115-126.
[3] WU Linlin, LI Xiaoyan, MAO Dehua, WANG Zongming. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 127-134.
[4] FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 153-161.
[5] WEN Yintang, WANG Tiezhu, WANG Shutao, Wang Guichuan, LIU Shiyu, CUI Kai. Automatic extraction of mosaic lines from high-resolution remote sensing images based on multi-scale segmentation[J]. Remote Sensing for Natural Resources, 2021, 33(4): 64-71.
[6] LI Yuan, WU Lin, QI Wenwen, GUO Zhengwei, LI Ning. A SAR image classification method based on an improved OGMRF-RC model[J]. Remote Sensing for Natural Resources, 2021, 33(4): 98-104.
[7] BAI Junlong, WANG Zhangqiong, YAN Haitao. A K-means clustering-guided threshold-based approach to classifying UAV remote sensed images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 114-120.
[8] DU Cheng, LI Delin, LI Genjun, YANG Xuesong. Application and exploration of dissolved oxygen inversion of plateau salt lakes based on spectral characteristics[J]. Remote Sensing for Natural Resources, 2021, 33(3): 246-252.
[9] FENG Dongdong, ZHANG Zhihua, SHI Haoyue. Fine extraction of urban villages in provincial capitals based on multivariate data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 272-278.
[10] WANG Rong, ZHAO Hongli, JIANG Yunzhong, HE Yi, DUAN Hao. Application and analyses of texture features based on GF-1 WFV images in monthly information extraction of crops[J]. Remote Sensing for Natural Resources, 2021, 33(3): 72-79.
[11] JIANG Xiao, ZHONG Chang, LIAN Zheng, WU Liangting, SHAO Zhitao. Research progress on classification criterion of geological information products based on satellite remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 279-283.
[12] LING Xiao, LIU Jiamei, WANG Tao, ZHU Yueqin, YUAN Lingling, CHEN Yangyang. Application of information value model based on symmetrical factors classification method in landslide hazard assessment[J]. Remote Sensing for Land & Resources, 2021, 33(2): 172-181.
[13] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
[14] GUO Wen, ZHANG Qiao. Building extraction using high-resolution satellite imagery based on an attention enhanced full convolution neural network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 100-107.
[15] HAN Yanling, CUI Pengxia, YANG Shuhu, LIU Yekun, WANG Jing, ZHANG Yun. Classification of hyperspectral image based on feature fusion of residual network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 11-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech