Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (2) : 226-232     DOI: 10.6046/gtzyyg.2020.02.29
|
Construction of regional economic development model based on satellite remote sensing technology
Hailing GU1, Chao CHEN1(), Ying LU1, Yanli CHU2
1. College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
2. School of Economics and Management, Zhejiang Ocean University, Zhoushan 316022, China
Download: PDF(1902 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In order to break through the time-consuming and laborious limitations of traditional regional economic development surveys, the authors built some regional economic development models by virtue of the advantages of remote sensing technology. First, based on multi-source and multi-temporal satellite remote sensing data, the authors obtained surface morphological changes and land use information, analyzed the correlation between land use types and regional economic indicators, optimized sensitive factors, then combined the social survey data to build a regional economic development model and finally performed an accuracy evaluation to verify the validity and applicability of the model. Zhoushan Islands were selected as the research area to carry out verification experiments. The experimental results show that the construction land area is the most sensitive factor related to various economic indicators, and the correlation coefficients with GDP, PIP, SIP and TIP are respectively 0.959 1, 0.939 0, 0.954 6 and 0.957 3. The average determination coefficient R2 of the regional economic development model built with the survey data is 0.979 5. The results obtained by the authors provide a new way of thinking for regional economic development prediction and economic data correction and also provide a possibility for humans to observe economic activities and their impact. The model built in this study is simple and clear yet with high precision, and thus is of great significance for understanding regional economic development as well as adjusting and correcting statistical data.

Keywords land use and cover change      satellite remote sensing technology      regional economic development      model construction      Zhoushan Islands     
:  TP79  
Corresponding Authors: Chao CHEN     E-mail: chenchao@zjou.edu.cn
Issue Date: 18 June 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hailing GU
Chao CHEN
Ying LU
Yanli CHU
Cite this article:   
Hailing GU,Chao CHEN,Ying LU, et al. Construction of regional economic development model based on satellite remote sensing technology[J]. Remote Sensing for Land & Resources, 2020, 32(2): 226-232.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.02.29     OR     https://www.gtzyyg.com/EN/Y2020/V32/I2/226
卫星遥感数据 经济与人口统计数据
时间 传感器 时间 经济指标 人口
1984年、1987—1988年、1990—1993年、1996—2001年、2003—2011年 Landsat5 TM 1990年、2000年、2005—2011年、2013—2017年 GDP,PIP,SIP,
TIP和人均 GDP值
常住人口
2013—2017年 Landsat8 OLI 1984年、1987—1988年、1991—1993年、1996—1999年、2001年、2003—2004年 插值之后的
常住人口
Tab.1  Acquired data in the study area
Fig.1  Flow chart of this study
土地利用类型 1984年 1987年 1988年 1990年 1991年 1992年 1993年 1996年 1997年 1998年 1999年 2000年 2001年 2003年
建设用地 50.84 39.17 62.55 56.23 56.03 53.86 47.76 86.13 78.55 107.19 73.07 107.83 111.08 126.06
植被 972.51 950.54 994.48 990.62 967.19 974.73 1 043.44 956.23 955.41 1 020.90 1 039.48 998.41 1 025.00 988.57
水体 28.44 60.18 50.45 71.42 49.45 81.43 45.96 42.40 34.89 57.74 40.67 48.43 51.56 47.31
裸地 255.55 247.57 188.59 157.36 221.10 170.19 131.12 211.54 188.53 114.52 83.03 126.23 130.59 118.22
陆域总面积 1 307.34 1 297.45 1 296.07 1 275.63 1 293.76 1 280.21 1 268.28 1 296.31 1 257.38 1 300.36 1 236.24 1 280.90 1 318.24 1 280.16
土地利用类型 2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2013年 2014年 2015年 2016年 2017年
建设用地 127.52 143.04 141.21 154.85 142.43 147.58 154.40 150.21 201.14 213.16 205.53 180.30 220.05
植被 996.38 976.87 976.07 998.16 900.54 1007.73 908.48 912.12 939.04 903.26 925.66 949.38 967.42
水体 62.22 63.49 69.56 46.60 60.80 54.79 60.36 60.03 55.01 74.17 73.07 89.88 68.96
裸地 80.23 79.97 135.45 149.37 199.72 154.99 192.88 226.04 167.12 117.34 140.49 175.90 115.67
陆域总面积 1 266.35 1 263.37 1 322.28 1 348.97 1 303.49 1 365.08 1 316.11 1 348.41 1 362.31 1 307.93 1 344.76 1 395.46 1 372.09
Tab.2  Area of land use types(km2)
Fig.2  Results of classification
指标 lg() lg() lg() lg() lg() e(') e(') e(') e(') e(')
GDP -0.545 5 0.645 8 0.919 4 -0.172 8 0.782 2 -0.546 3 0.607 2 0.842 2 -0.113 2 0.777 4 -0.529 9 0.662 4 0.943 9 -0.222 1 0.808 0
PIP -0.443 3 0.621 4 0.917 2 -0.263 1 0.762 5 -0.443 5 0.581 9 0.850 0 -0.202 5 0.756 0 -0.432 6 0.643 4 0.939 8 -0.310 6 0.801 7
SIP -0.614 0 0.647 8 0.926 8 -0.144 5 0.757 6 -0.616 1 0.617 0 0.860 8 -0.084 3 0.754 0 -0.589 3 0.655 4 0.940 9 -0.197 3 0.773 6
TIP -0.526 1 0.647 4 0.897 8 -0.155 1 0.7943 -0.526 1 0.603 1 0.809 0 -0.098 0 0.789 2 -0.515 6 0.668 5 0.931 0 -0.201 6 0.822 9
人均 GDP -0.547 0 0.646 1 0.919 5 -0.171 7 0.782 3 -0.547 8 0.607 6 0.842 4 -0.112 1 0.777 5 -0.531 4 0.662 4 0.943 9 -0.221 0 0.807 9
常住人口 -0.463 9 0.616 0 0.962 8 -0.4057 0.622 8 -0.468 0 0.615 4 0.956 2 -0.329 6 0.618 3 -0.430 3 0.605 0 0.942 9 -0.469 6 0.647 5
e(GDP') -0.453 5 0.7055 0.881 5 -0.267 4 0.725 1 -0.4545 0.691 4 0.807 4 -0.196 2 0.719 0 -0.437 8 0.704 7 0.907 0 -0.326 3 0.762 2
e(PIP') -0.404 4 0.616 2 0.870 1 -0.224 9 0.781 9 -0.403 2 0.568 2 0.787 0 -0.168 4 0.774 9 -0.403 0 0.645 4 0.905 1 -0.267 5 0.824 9
e(SIP') -0.574 6 0.643 2 0.901 9 -0.129 9 0.779 7 -0.575 8 0.605 4 0.822 2 -0.071 2 0.775 4 -0.555 9 0.657 6 0.927 5 -0.179 8 0.801 5
e(TIP') -0.463 0 0.630 5 0.856 7 -0.151 7 0.799 3 -0.461 8 0.580 6 0.758 7 -0.097 5 0.793 4 -0.460 9 0.657 7 0.899 2 -0.193 6 0.834 1
e(人均GDP') -0.492 7 0.635 0 0.880 8 -0.159 1 0.7952 -0.492 3 0.589 6 0.791 1 -0.102 4 0.789 7 -0.485 3 0.658 1 0.916 4 -0.204 1 0.826 9
e(常住人口') -0.502 7 0.630 9 0.967 1 -0.3289 0.691 9 -0.505 7 0.617 0 0.934 9 -0.257 1 0.687 3 -0.474 6 0.629 4 0.962 7 -0.388 6 0.716 2
lg(GDP) -0.459 3 0.5901 0.947 9 -0.431 7 0.563 1 -0.4640 0.599 9 0.959 1 -0.361 5 0.558 8 -0.422 0 0.571 2 0.914 8 -0.491 8 0.585 9
lg(PIP) -0.372 5 0.565 5 0.925 4 -0.486 1 0.543 5 -0.376 9 0.575 0 0.939 0 -0.413 2 0.537 6 -0.337 5 0.551 8 0.896 9 -0.547 2 0.579 5
lg(SIP) -0.492 3 0.594 1 0.942 4 -0.405 9 0.554 6 -0.497 0 0.606 3 0.954 6 -0.337 7 0.551 1 -0.454 2 0.571 5 0.906 4 -0.465 5 0.572 0
lg(TIP) -0.5024 0.620 1 0.959 9 -0.387 5 0.602 7 -0.506 3 0.622 9 0.957 3 -0.321 0 0.598 7 -0.468 8 0.604 1 0.933 8 -0.445 3 0.623 3
lg(人均GDP) -0.464 2 0.591 0 0.949 4 -0.426 8 0.566 8 -0.468 7 0.600 1 0.959 7 -0.357 2 0.562 6 -0.427 2 0.572 4 0.916 7 -0.486 5 0.589 2
lg(常住人口) -0.450 7 0.610 9 0.958 3 -0.425 4 0.603 2 -0.455 0 0.613 7 0.958 1 -0.348 2 0.598 7 -0.415 9 0.597 5 0.934 8 -0.490 3 0.628 2
Tab.3  Correlation matrix between area of land use types and economic indicators
单因子 双因子
x y 线性模型 R2 平均R2 x y 线性模型 R2 平均R2
lg(建设用
地面积)
lg(GDP) y=2.595 0 x-3.034 1 0.919 8 0.907 3 lg(常住人口) x1
lg(建设用地面积) x2
lg(GDP) y=18.236 29 x1+0.247 334 x2-35.130 7 0.988 4 0.979 5
lg(PIP) y=1.735 2 x-2.006 4 0.881 7 lg(PIP) y=13.946 08 x1-0.060 12 x2-26.552 1 0.967 7
lg(SIP) y=2.683 6 x-3.673 8 0.911 2 lg(SIP) y=18.150 05 x1+0.347 049 x2-35.618 7 0.974 1
lg(TIP) y=2.867 3 x-3.979 4 0.916 5 lg(TIP) y=20.561 14 x1+0.220 352 x2-40.168 0.987 7
Tab.4  Constructed models
经济
指标
单因子 双因子
D/% RMSE RyY D/% RMSE RyY
GDP 8.44 107.66 0.946 5 -8.50 78.11 0.967 0
PIP 6.79 9.44 0.952 5 -3.06 9.87 0.989 0
SIP 6.50 123.75 0.901 3 -11.59 46.67 0.908 3
TIP 16.56 64.93 0.945 3 -6.00 29.33 0.973 5
平均值 9.57 76.44 0.936 4 -7.29 40.99 0.959 4
Tab.5  Accuracy evaluation of constructed models
[1] Grekousis G, Mountrakis G, Kavouras M. Linking MODIS-derived forest and cropland land cover 2011 estimations to socioeconomic and environmental indicators for the European Union’s 28 countries[J]. GIS Science & Remote Sensing, 2016,53(1):122-146.
[2] Vilar L, Camia A, San M A J,et al.Modeling temporal changes in human-caused wildfires in Mediterranean Europe based on Land Use-Land Cover interfaces[J]. Forest Ecology and Management, 2016,378:68-78.
[3] 潘思东. 基于夜间灯光遥感和小区POI的住宅发展与经济增长的空间耦合研究[J]. 地球信息科学学报, 2017,19(5):646-652.
[3] Pan S D. Spatial coupling between housing development and economic growth based on night light remote sensing and residential POI[J]. Journal of Geo-information Science, 2017,19(5):646-652.
[4] 赵展, 夏旺, 闫利. 基于多源数据的土地利用变化检测[J]. 国土资源遥感, 2018,30(4):148-155.doi: 10.6046/gtzyyg.2018.04.22.
[4] Zhao Z, Xia W, Yan L. Land use change detection based on multi-source data[J]. Remote Sensing for Land and Resources, 2018,30(4):148-155.doi: 10.6046/gtzyyg.2018.04.22.
[5] Handavu F, Chirwa P W C, Syampungani S,Socio-economic factors influencing land-use and land-cover changes in the miombo woodlands of the Copperbelt Province in Zambia[J]. Forest Policy and Economics, 2019,100:75-94.
[6] Chen Q, Hou X, Zhang X, et al. Improved GDP spatialization approach by combining land-use data and night-time light data:A case study in China’s continental coastal area[J]. International Journal of Remote Sensing, 2016,37(19):4610-4622.
[7] 韩向娣, 周艺, 王世新, 等. 基于夜间灯光和土地利用数据的GDP空间化[J]. 遥感技术与应用, 2012,27(3):396-405.
[7] Hang X D, Zhou Y, Wang S X, et al. GDP spatialization in China based on DMSP/OLS data and land use data[J]. Remote Sensing Technology and Application, 2012,27(3):396-405.
[8] 李翔, 朱江, 尹向东. 基于夜间灯光数据的中国经济发展时空格局特征[J]. 地球信息科学学报, 2019,21(3):417-426.
[8] Li X, Zhu J, Yin X D. Spatio-temporal pattern of Chinese economy development based on nightlight data[J]. Journal of Geo-information Science, 2019,21(3):417-426.
[9] Li G, Li F, Urban sprawl in China:Differences and socioeconomic drivers[J]. Science of the Total Environment, 2019,673:367-377.
[10] Shapla T, Park J, Hongo C, et al. Agricultural land cover change in Gazipur,Bangladesh, in relation to local economy studied using Landsat images[J]. Advances in Remote Sensing, 2015,4(3):214.
[11] Yu W, Zang S, Wu C, et al. Analyzing and modeling land use land cover change(LUCC) in the Daqing City, China[J]. Applied Geography, 2011,31(2):600-608
[12] 李少英, 刘小平, 黎夏, 等. 土地利用变化模拟模型及应用研究进展[J]. 遥感学报, 2017,21(3):329-340.
[12] Li S Y, Liu X P, Li X, et al. Simulation model of land use dynamics and application:Progress and prospects[J]. Journal of Remote Sensing, 2017,21(3):329-340.
[13] 张登荣, 许思莹, 谢斌, 等. 近40年椒江-台州湾滩涂围垦土地利用变化的遥感调查[J]. 国土资源遥感, 2016,28(1):101-106.doi: 10.6046/gtzyyg.2016.01.15.
[13] Zhang D R, Xu S Y, Xie B, et al. Land use change of reclaimed mud flats in Jiaojiang-Taizhou Estuary in the past 40 years based on remote sensing technology[J]. Remote Sensing for Land and Resources, 2016,28(1):101-106.doi: 10.6046/gtzyyg.2016.01.15.
[14] Yin J, Yin Z, Zhong H, et al. Monitoring urban expansion and land use/land cover changes of Shanghai metropolitan area during the transitional economy(1979—2009) in China[J]. Environmental Monitoring and Assessment, 2011,177(1-4):609-621.
[15] 陈超, 傅姣琪, 随欣欣, 等. 面向灾后水体遥感信息提取的知识决策树构建及应用[J]. 遥感学报, 2018,22(5):792-801.
[15] Chen C, Fu J Q, Sui X X, et al. Construction and application of knowledge decision tree after a disaster for water body information extraction from remote sensing images[J]. Journal of Remote Sensing, 2018,22(5):792-801.
[16] 陈玲, 贾佳, 王海庆. 高分遥感在自然资源调查中的应用综述[J]. 国土资源遥感, 2019,31(1):1-7.doi: 10.6046/gtzyyg.2009.01.01.
[16] Chen L, Jia J, Wang H Q. An overview of applying high resolution remote sensing to land and resources survey[J]. Remote Sensing for Land and Resources, 2019,31(1):1-7.doi: 10.6046/gtzyyg.2009.01.01.
[17] 施利锋, 张增祥, 刘芳, 等. 1973年—2013年经济特区城市空间扩展遥感监测[J]. 遥感学报, 2015,19(6):1030-1039.
[17] Shi L F, Zhang Z X, Liu F, et al. Spatial expansion remote sensing monitoring of special economic zones from 1973 to 2013[J]. Journal of Remote Sensing, 2015,19(6):1030-1039.
[18] 曾刚, 尚勇敏, 司月芳. 中国区域经济发展模式的趋同演化-以中国16中典型模式为例[J]. 地理研究, 2015,34(11):2005-2020.
[18] Zeng G, Shang Y M, Si Y F. The convergent evolution of China’s regional economic development models[J]. Geographical Research, 2015,34(11):2005-2020.
[19] 鲁旭, 陈超. 基于遥感数据的舟山市土地利用时空格局研究[J]. 浙江科技学院学报, 2018,30(5):404-411.
[19] Lu X, Chen C. Research on spatial-temporal pattern of land use in Zhoushan city by using remote sensing images[J]. Journal of Zhejiang University of Science and Technology, 2018,30(5):404-411.
[20] 张晓萍, 吕颖, 张华国, 等. 1990—2011年舟山群岛不透水面动态遥感分析[J]. 国土资源遥感, 2018,30(2):178-185.doi: 10.6046/gtzyyg.2018.02.01.
[20] Zhang X P, Lyu Y, Zhang H G, et al. Remote sensing analysis of impervious surface change in Zhoushan Islands during 1990—2011[J]. Remote Sensing for Land and Resources, 2018,30(2):178-185.doi: 10.6046/gtzyyg.2018.02.01.
[1] CHEN Chao, CHEN Huixin, CHEN Dong, ZHANG Zili, ZHANG Xufeng, ZHUANG Yue, CHU Yanli, CHEN Jianyu, ZHENG Hong. Coastline extraction and spatial-temporal variations using remote sensing technology in Zhoushan Islands[J]. Remote Sensing for Land & Resources, 2021, 33(2): 141-152.
[2] Xiaoping ZHANG, Ying LYU, Huaguo ZHANG, Chaokui LI. Remote sensing analysis of impervious surface changes in Zhoushan Islands during 1990—2011[J]. Remote Sensing for Land & Resources, 2018, 30(2): 178-185.
[3] NI Zhong-Yun, HE Zheng-Wei, ZHAO Yin-Bing, WANG Le, GAO Hui, CAI Ke-Ke. The Information Extraction Method for Land Use and Cover Change (LUCC)
after the Earthquake in Dujiang Dam
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(1): 73-76.
[4] Gan Fuping, Wang Runsheng, Wang Yongjiang, Fu Zhengwen. THE CLASSIFICATION METHOD BASED ON REMOTE SENSING TECHNIQUES FOR LAND USE AND COVER[J]. REMOTE SENSING FOR LAND & RESOURCES, 1999, 11(4): 40-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech