Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (3) : 1-7     DOI: 10.6046/gtzyyg.2020.03.01
|
Progress in remote sensing detection of oil spill damping mechanism
LIU Yufang1(), ZOU Yarong2,3(), LIANG Chao2,3
1. PIESAT Information Technology Company, Beijing 100195, China
2. National Ocean Satellite Application Center, MNR, Beijing 100081, China
3. Key Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources, Beijing 100081, China
Download: PDF(752 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Oil spill is one of the main sources of pollution to the marine environment. Early monitoring of oil spill is very important for marine environment protecting. In this paper, the calculation of radar backscattering based on the wave spectrum was carried out, and a review of the study of the damping ratio of wave spectrum in consideration of the films characteristics, water molecular tension, elastic model and surface tension was carried out. The problem of insufficient research on the damping of the oil spill remote sensing monitoring with the wave spectrum and the quantitative calculation of the damping was discussed. The research on the damping of the oil spill for remote sensing monitoring in the future may be based on the backscattering characteristics of the real ocean wave spectrum under the cover with oil slicks. The research on radar coefficient calculation can provide support for quantitative analysis of the damping characteristics of oil spills, thus improving the accuracy of oil spill remote sensing monitoring.

Keywords oil spill      damping mechanism      remote sensing detection      progress     
:  TP79  
Corresponding Authors: ZOU Yarong     E-mail: 13691093600@163.com;zyr@mail.nsoas.org.cn
Issue Date: 09 October 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yufang LIU
Yarong ZOU
Chao LIANG
Cite this article:   
Yufang LIU,Yarong ZOU,Chao LIANG. Progress in remote sensing detection of oil spill damping mechanism[J]. Remote Sensing for Land & Resources, 2020, 32(3): 1-7.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.03.01     OR     https://www.gtzyyg.com/EN/Y2020/V32/I3/1
作者及年份 采用的近似模型 比较评价
Gill等,2002年[4] 建立了海面雷达散射截面计算模型 对低入射角下海面垂直极化散射计算有效
Hermansson等,2003年[5] SPM近似模型 SPM近似模型仅适用于粗糙度角较小的表面
Chen等,1988年[10]
Thorsos等,1989年[11]
Thorsos,1988年[12]
使用高斯随机粗糙表面谱及P-M谱研究了K-A模型与SPA模型的适用性 K-A模型与SPA模型只能计算单一粗糙度表面的电磁波散射
Khenchaf,2000年[13] 基于TSM模型开展散射计算 TSM模型尺度划分具有任意性
Voronovich,1985年[14]
Broschat,1993年[15]
Thorsos等,1995年[16]
Broschat等,1997年[17]
基于SSA模型开展散射计算 SSA模型可以在一种理论框架下适应长、中、小尺度波数区间海面粗糙度下的散射计算
Tab.1  The main research of radom surface scattering calculation
作者及年份 模型、方法与主要成果 比较评价
Alpers等,1988年[25]
Htihnerfuss,1986年[27]
选择适当的物理海洋学模型来描述油膜对海洋表面的调制效果,揭示油膜层的电磁阻尼特性 采用Marangoni理论解释了油膜对海面短重力-毛细波的阻尼作用
Lombardini等,1989年[28] 给出了油膜阻尼比的解析表达式 模型计算与实际测量结果具有较好的一致性
Gade等,1998年[39] 基于Marangoni理论将阻尼比定义为油膜覆盖海面与无油膜覆盖海面黏性阻尼系数的比值,给出了阻尼比近似表达式 计算了3种油膜(OLA,OLME和TOLG)的理论阻尼曲线
Wei等, 1992年[36]
Onstott等,1992年[37]
Cini等,1978年[38].
Gade等,1998年[40,41]
利用SIR-C/X-SAR任务期间的多次海上油膜实验及其他机载雷达散射计测量数据分析油膜阻尼与环境风速的关系。在阻尼计算中考虑了波动平衡方程各作用项的影响,将油膜的理论阻尼比写成油膜覆盖海面与无油膜海面雷达后向散射截面的比值的形式 Gade等基于阻尼比公式定性分析了多次海上油膜测量实验中实测的油膜阻尼比,提出了不同种类油膜在中(5 m/s)、低(3.5~4 m/s)、高(12 m/s)等不同风速条件下的阻尼变化情况的理论解释,并给出了高风速(大于10 m/s)海况下油膜阻尼比近似计算公式
Ermakov等,1986年[34] 对阻尼比公式进行了发展 Ermakov描述了弹性油膜对表面重力毛细波的作用,Gambardella在此基础上得出了微风及中等风速条件下海面油膜阻尼模型
Tab.2  Study on oil spill damping and scattering simulation
作者及年代 模型方法 海面谱 成果比较
Franceschetti等,2002年[44] 分布式表面模型 P-M谱 给出了阻尼比率的公式表达,定量描述了油膜物理属性对海面波浪谱的阻尼作用
Nicolas等,2006年[46] PILE模型 统一海浪谱 模拟了海面雷达后向散射截面,并与几何光学近似模型进行对比分析
Nunziata等,2009年[47] 双尺度边界扰动模型 全区间海面谱 能很好地解释和预测表面生物膜散射对比度
Timchenko等, 2002年[45] SPM模型 扩展到整个海面波谱区间的模型 通过数值模拟了油膜覆盖海面雷达后向散射衰减
Ayari等,2010年[48] TSM模型 Elfouhaily统一海浪谱 计算了前向、后向及双基站配置下油膜覆盖海面雷达后向散射截面
Kim等,2016年[51] 微波散射模型和Monte-Carlo模拟 一维粗糙海面 将数值模拟结果与2007年河北Spirit油轮引起海面溢油SAR图像进行了比较
Zheng等,2016年[52] 小扰动模型和传统的双尺度模型 理论模型模拟海面 数值模拟结果与无人机载L波段全极化SAR影像进行比较,表明其理论模型可以用来估算25°~60°入射角下海面微波散射的极化特征
Kim等,2016年[51] Mont-Carlo方法和矩量法 Elfouhaily谱、Durden-Vesecky谱 对比2007年河北Spirit油轮溢油TerraSAR-X影像,对充分发展海面,Elfouhaily谱具有比Durden-Vesecky谱更好的一致性
杨永红等,2012年[53] TMA谱模型和Marangoni溢油理论模型 Lombardini(1989年)建立的溢油海面海浪谱 可用于浅海环境下海面溢油电磁散射计算及分析溢油对电磁散射的影响
Tab.3  Study on oil spill damping scattering simulation
[1] 温艳萍, 吴传雯. 大连新港“连·16溢油事故”直接经济损失评估[J]. 中国渔业经济, 2013,31(4):91-96.
[1] Wen Y P, Wu C W. Direct economic loss assessment of “Lian 16 oil spill accident” in Dalian new port[J]. China Fisheries Economy, 2013,31(4):91-96.
[2] 郭永峰, 纪少君, 唐长全. 从美国政府墨西哥湾事故调查委员会组成得到的启示[J].石油知识, 2011(4):58-59.
[2] Guo Y F, Ji S J, Tang C Q. Enlightenment from the composition of the Gulf accident investigation committee of the US government[J].Petroleum knowledge 2011(4):58-59.
[3] 国家海洋局. 蓬莱19-3油田溢油事故联合调查组关于事故调查处理报告[R]. 2012.
[3] State Oceanic Administration. Report on accident investigation and handling by joint investigation group of oil spill accident in Penglai 19-3 oilfield[R]. 2012.
[4] Gill E W, Walsh J. A perspective on two decades of fundamental and applied research in electromagnetic scattering and high frequency ground wave radar on the Canadian East Coast [C]//IEEE International Geoscience & Remote Sensing Symposium.IEEE, 2002.
[5] Hermansson P, Forssell G, FagerstrÄom J. A review of models for scattering from rough surfaces[R]. Swedish Defence Research Agency Sensor Technology, 2003.
[6] Rice O S. Reflection of electromagnetic waves from slightly rough surfaces[J]. Communications on Pure and Applied Mathematics, 2010,4(2-3):351-378.
[7] Beckmann P, Spizzichino A. The scattering of electromagnetic waves from rough surfaces[M]. Norwood,MA,Artech House,Inc., 1987: 511.
[8] Andre S. The scattering of electromagnetic waves from rough surfaces[M]. New York: Pergamon Press, 1963.
[9] Ishimaru A. Wave propagation and scattering in random media[M]. New York: Academic Press, 1978.
[10] Chen M F, Fung A K. A numerical study of the regions of validity of the Kirchhoff and small:Perturbation rough surface scattering models[J]. Radio Science, 1988,23(2):163-170.
[11] Thorsos E I, Jackson D R. The validity of the perturbation approximation for rough surface scattering using a Gaussian roughness spectrum[J]. The Journal of the Acoustical Society of America, 1989,86(1):261-277.
[12] Thorsos E I. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum[J]. The Journal of the Acoustical Society of America, 1988,83(1):78-92.
[13] Khenchaf A. Bistatic scattering and depolarization by randomly rough surfaces:Application to the natural rough surfaces in X-band[J]. Waves in Random and Complex Media, 2000,11(2):61-89.
[14] Voronovich A G. Small slope approximation in wave scattering by rough surfaces[J]. Sou Phys JETP, 1985,62:65-70.
[15] Broschat S L. The small slope approximation reflection coefficient for scattering from a "Pierson-Moskowitz" sea surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 1993,31(5):1112-1114.
[16] Thorsos E I, Broschat S L. An investigation of the small slope approximation for scattering from rough surfaces.Part I.Theory[J]. The Journal of the Acoustical Society of America, 1995,97(4):2082-2093.
[17] Broschat S L, Thorsos E I. An investigation of the small slope approximation for scattering from rough surfaces.Part II.Numerical studies[J]. The Journal of the Acoustical Society of America, 1997,101(5):2615-2625.
[18] Pierson W J, Moskowitz L. A proposed spectral form for fully developed wind seas based on the similarity theory of SA Kitaigorodskii[J]. Journal of geophysical research, 1964,69(24):5181-5190.
[19] Thorsos E I. Acoustic scattering from a “Pierson-Moskowitz”sea surface[J]. The Journal of the Acoustical Society of America, 1990,88(1):335-349.
[20] Donelan M A, Pierson W J P. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry[J]. J Geophys Res, 1987,92:4971-5029.
[21] Bjerkaas A W, Riedel F W. Proposed model for the elevation spectrum of a wind-roughened sea surface[J]. Appl Phys Lab, 1979: 31.
[22] Apel J R, An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter[J]. Journal of Geoohysical Geophys Research(Oceans), 1994,99(8):16289.
[23] Fung A K, Lee K K. A semi-empirical sea-spectrum model for scattering coefficient estimation[J]. IEEE J Oceanic Eng, 1982,7(4), 166-176.
[24] Elfouhaily T, Charpon B, Katsaros K: A unified directional spectrum for long and short wind-driven waves[J]. JGR, 1997,102:15781-15796.
[25] Alpers W, Htihnerfuss H. Radar signatures of oil films floating on the sea and the Marangoni effect[J]. J Geophys Res, 1988,93:3642-3648.
[26] Alpers W, Htihnerfuss H, The damping of ocean waves by surface films:A new look at an old problem[J]. J Geophys Res, 1989,94:6251-6265.
[27] Htihnerfuss H. The molecular structure of the system water/monomolecular surface film and its influence on water wave damping,Habilitationsschr.,Fachbereich 13(Chem.),Univ.Hamburg,Hamburg,Germany, 1986: 245.
[28] Lombardini P, Fiscella B, Trivero P,etc.Modulation of the spectra of short gravity waves by sea surface films:slick detection and characterization with a microwave probe[J]. Journal of Atmospheric and Oceanic Technology, 1989,6:882-90.
[29] Garrett W D, Damping of capillary waves at the air-sea interface by oceanic surface-active material[J]. J Mar Res, 1968,25:279-291.
[30] Htihnerfuss H, Alpers W, Cross A, et al. The modification of X and L band radar signals by monomolecular sea slicks[J]. J Geophys Res, 1983,88:9817-9822.
doi: 10.1029/JC088iC14p09817 url: http://doi.wiley.com/10.1029/JC088iC14p09817
[31] Htihnerfuss H, Alpers W, Garrett W D, et al. Attenuation of capillary and gravity waves at sea by monomolecular organic surface films[J]. J Geophys.Res, 1983,88:9809-9816.
[32] Htihnerfuss H, Gericke A, Alpers W, et al. Classification of sea slicks by multi-frequency radar techniques:New chemical insights and their geophysica implications[J]. J Geophys Res, 1994,99:9835-9845.
[33] Hilhnerfuss H, Alpers W, Dannhauer H, et al. Natural and man-made sea slicks in the North Sea investigated by a helicopter-borne 5-frequenc radar scatterometer[J]. lnt J Remote Sens, 1996,17:1567-1582.
[34] Ermakov S A, Zujkova E M, Panchenko A R, et al. Surface film effect on short wind waves[J]. Dyn Atmos Oceans, 1986,10:31-50.
[35] Wu J. Suppression of oceanic ripples by surfactant-spectral effects deduced from sun-glitter,wave-staff and microwave measurements[J]. J Phys Oceanogr, 1989,19:238-245.
[36] Wei Y, Wu J. In situ measurements of surface tension,wave damping,and wind properties modified by natural films[J]. J Geophys Res, 1992,97:5307-5313.
[37] Onstott R, Rufenach C. Shipboard active and passive microwave measurement of ocean surface slicks off the southern California coast[J]. J Geophys Res, 1992,97:5315-5323.
[38] Cini R, Lombardini P P. Damping effect of monolayers on surface wave motion in a liquid[J]. J Colloid Interface Sci, 1978,65:387-389.
doi: 10.1016/0021-9797(78)90170-4 url: https://linkinghub.elsevier.com/retrieve/pii/0021979778901704
[39] Gade M, Alpers W, Htihnerfuss H, et al. Wind wave tank measurements of wave damping and radar cross sections in the presence of monomolecular surface films[J]. J Geophys Res, 1998,103:3167-3178.
doi: 10.1029/97JC01578 url: http://doi.wiley.com/10.1029/97JC01578
[40] Gade M, Alpers W, Huhnerfuss H, et al. On the reduction of the radar backscatter by oceanic surface films:Scatterometer measurements and their theoretical interpretation[J]. Remote Sensing of Environment, 1998,70(66):52-70.
doi: 10.1016/S0034-4257(99)00057-7 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425799000577
[41] Gade M, Alpers W, Hühnerfuss H, et al. Imaging of biogenic and anthropogenic ocean surface films by the multifrequency/multipolarization SIR-C/X-SAR[J]. Journal of Geophysical Research, 1998,103(C9):18851.
doi: 10.1029/97JC01915 url: http://doi.wiley.com/10.1029/97JC01915
[42] Hasselmann K. Grundgleichungen der Seegangsvorhersage,Schiffstechnol[J]. 1960,1:191-195.
[43] Gade M, Alpers W, Huhnerfuss H, et al. On the reduction of the radar backscatter by oceanic surface films:Scatterometer measurements and their theoretical interpretation[J]. Remote Sensing of Environment, 1998,70(66):52-70.
doi: 10.1016/S0034-4257(99)00057-7 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425799000577
[44] Franceschetti G, Fellow L, et al. SAR raw signal simulation of oil slicks in ocean environments[J]. IEEE Transactions on Geoscience & Remote Sensing, 2002,40(9):1935-1949.
[45] Timchenko A I, Serebryannikov A E, Schuenemann K F. Model of electromagnetic wave scattering from sea surface with and without oil slicks[J]. Progress in Electromagnetics Research, 2002,37:319-343.
[46] Nicolas D, Beaucoudrey N D, Bourlier C, et al. Fast numerical method for electromagnetic scattering by rough layered interfaces:Propagation-inside-layer expansion method[J]. Journal of the Optical Society of America A, 2006,23(2):359-369.
[47] Nunziata F, Sobieski P, Migliaccio M. The two-scale BPM scattering model for sea biogenic slicks contrast[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009,47(7):1949-1956.
[48] Ayari M, Coatanhay A, Khenchaf A. The influence of ripple damping on electromagnetic bistatic scattering by sea surface[J]. Geoscience and Remote Sensing Symposium, 2010,2:1345-1348.
[49] Minchew B, Jones C E, Holt B. Polarimetric analysis of backscatter from the deepwater horizon oil spill using L-band synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012,50(10):3812-3830.
[50] Ermakov S A, Sergievskaya I A, Gushchin L A. Damping of gravity-capillary waves in the presence of oil slicks according to data from laboratory and numerical experiments[J]. Izvestiya Atmospheric & Oceanic Physics, 2012,48(5):565-572.
[51] Kim T H, Yang C S, Ouchi K. Accuracy improvement of the radar backscatter simulation from sea surface covered by oil slick using fetch-dependent waveheight spectrum:Comparison with the 2007 Heibei Spirit Case in the Yellow Sea[J]. Ocean Science Journal, 2016,51(2):235-249.
[52] Zheng H, Zhang Y, Wang Y, et al. Theoretical study on polarimetric features of microwave scattering from sea surface [C]//2016 Progress in Electromagnetic Research Symposium(PIERS),IEEE, 2016.
[53] 杨永红, 徐平, 林明. 浅海环境下溢油海面的仿真[J]. 海洋通报, 2012,31(6):636-639.
[53] Yang Y H, Xu P, Lin M. Simulation of sea surface with oil slick in the shallow sea environment[J]. Marine Science Bulletin, 2012,31(6):636-639.
[54] Zou Y R, Shi L J, Zhang S L, et al. Oil spill detection by a support vector machine based on polarization decomposition characteristics[J]. Acta Oceanologica Sinica, 2016,35(9):86-90.
[55] Ivanov A Y, Filimonova N A, Kucheiko A Y, et al. Oil spills in the Barents Sea based on satellite monitoring using SAR:Spatial distribution and main sources[J]. International Journal of Remote Sensing, 2017: 1-15.
[56] Dutta S, Joseph M, Kumari E V S S, Automated approach for extraction of oil spill from SAR imagery[J].Journal of the Indian Society of Remote Sensing, 2018(5):1-7.
[1] JIANG Xiao, ZHONG Chang, LIAN Zheng, WU Liangting, SHAO Zhitao. Research progress on classification criterion of geological information products based on satellite remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 279-283.
[2] PEI Chan, LIAO Tiejun. Multi-scale architecture search method for remote sensing object detection[J]. Remote Sensing for Land & Resources, 2020, 32(4): 53-60.
[3] Jiaojiao DIAO, Xinye GONG, Mingshi LI. A comprehensive change detection method for updating land cover data base[J]. Remote Sensing for Land & Resources, 2018, 30(1): 157-165.
[4] LI Wanlun, GAN Fuping. Progress in hyperspectral research and monitoring in mine environment[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 1-7.
[5] LIANG Shuneng, GAN Fuping, WEI Hongyan, XIAO Chenchao, ZHANG Zhenhua, WEI Dandan. Progress in construction of remote sensing and geological test field for comprehensive application and resources evaluation in Hami, Xinjiang[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 8-14.
[6] WU Fang, ZHANG Zonggui, GUO Zhaocheng, AN Zhihong, YU Kun, LI Ting. Method of deriving DEM in the mining area based on filtering of airborne LiDAR data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 62-67.
[7] ZHU Shanyou, ZHANG Ying, ZHANG Hailong, CAO Yun, ZHANG Guixin. Progress of researches on monitoring large-area forest disturbance by Landsat satellite images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 5-10.
[8] GAI Yingying, ZHOU Bin, SUN Yuanfang, ZHOU Yan. Study of extraction methods for ocean surface oil spill using HJ-CCD data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 99-104.
[9] LIU Bingxin, LI Ying, GAO Chao. Method for oil spill information extraction from airborne multispectral imagery[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 42-46.
[10] SHEN Jin-Li, DING Shu-Bai, QI Xiao-Ping, XiNG Hua-Wen. The Progress of Remote Sensing Technology in the Detection of Hydrocarbon Micro-seepage[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(3): 7-11.
[11] LIU De-Chang, ZHAO Ying-Jun, YANG Xu. Technological Progress and Sustainable Development of Remote Sensing for Uranium Geology since the Beginning of the 21st Century[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(1): 14-18.
[12] XIONG Sheng-Qing. A REVIEW OF LUNAR EXPLORATION AND STUDY[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(4): 1-7.
[13] XIONG Sheng-Qing. THE PROGRESS AND DEVELOPMENT TREND OF THE APPLICATION OF REMOTE SENSING TO LAND AND RESOURCES[J]. REMOTE SENSING FOR LAND & RESOURCES, 2007, 19(4): 1-6.
[14] ZHANG Jian-min, GUAN Hai-yan, A. Rosema . THE APPLICATION OF REMOTE SENSING FOUR-LAYER DETECTION TECHNOLOGY TO COAL FIRE AREAS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2004, 16(4): 50-53,62.
[15] SHI Yi-qiang, CHEN Chong-cheng, CHEN Ling . THE APPLICATION OF REMOTE SENSING TECHNOLOGY TO ENVIRONMENT: ITS PROGRESS AND PROSPECTS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2002, 14(4): 7-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech