Please wait a minute...
REMOTE SENSING FOR LAND & RESOURCES    2015, Vol. 27 Issue (1) : 62-67     DOI: 10.6046/gtzyyg.2015.01.10
Technology and Methodology |
Method of deriving DEM in the mining area based on filtering of airborne LiDAR data
WU Fang, ZHANG Zonggui, GUO Zhaocheng, AN Zhihong, YU Kun, LI Ting
China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China
Download: PDF(4208 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Airborne LiDAR data can be used to monitor ground collapse in the vegetation-covered area effectively. A progressive triangulation filtering DEM-construction method based on region segmentation is proposed in this paper. In this method, the raw point clouds are re-organized so as to improve the efficiency of points calculation; combined with the regional statistical value of elevation difference, the authors conducted segmentation of ground points and non-ground points according to survey area's terrain, and then used ground points to build the initial sparse TIN model. Following the calculation of the distance between other points and TIN, the authors obtained progressive encryption triangulation and extracted ground points. Finally the authors eliminated isolated points, thus generating a DEM. This method was applied to airborne LiDAR data obtained in Hunan Province. The experiment results show that the proposed method is promising. The DEM constructed by this method conveys more refined topographical information. Especially in the vegetation-covered area, the extraction of high-precision DEM can be achieved. Meanwhile, the location and range of ground collapse can be shown.

Keywords vulnerability      ecological environment      upper reaches of the Minjiang River      analytic hierarchy process(AHP)      spatial distribution     
:  TP75  
Issue Date: 08 December 2014
E-mail this article
E-mail Alert
Articles by authors
ZHAN Jinfeng
LI Maojiao
Cite this article:   
YANG Bin,ZHAN Jinfeng,LI Maojiao. Method of deriving DEM in the mining area based on filtering of airborne LiDAR data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 62-67.
URL:     OR

[1] 黄先锋,李卉,王潇,等.机载LiDAR数据滤波方法评述[J].测绘学报,2009,38(5):466-469. Huang X F,Li H,Wang X,et al.Filter algorithms of airborne LiDAR data:Review and prospects[J].Acta Geodaetica et Cartographica Sinica,2009,38(5):466-469.

[2] Axelsson P.Processing of laser scanner data-algorithms and applications[J].ISPRS Journal of Photogrammetry and Remote Sensing,1999,54(2/3):138-147.

[3] 张小红.机载激光雷达测量技术理论与方法[M].武汉:武汉大学出版社,2007. Zhang X H.Airborne Laser Radar Measurement Technology Theory and Method[M].Wuhan:Wuhan University,2007.

[4] Vosselman G.Slope based filtering of laser altimetry data[J].International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2000,33(B3):935-942.

[5] 李迁,肖春蕾,陈洁,等.基于机载LiDAR点云和建筑物轮廓线构建DSM的方法[J].国土资源遥感,2013,25(2):95-100. Li Q,Xiao C L,Chen J.Method for constructing DSM based on building contour line and airborne LiDAR data[J].Remote Sensing for Land and Resources,2013,25(2):95-100.

[6] Sohn G,Dowman I.Terrain surface reconstruction by the use of tetrahedron model with the MDL criterion[J].International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2002,34(A3):336-344.

[7] 林祥国,张继贤,贾毅.机载LiDAR数据的多回波信息分析及滤波方案[J].测绘科学,2013,38(3):28-30. Lin X G,Zhang J X,Jia Y.Analysis of multiple returns of a pulse and its application on filtering of airborne LiDAR data[J].Science of Surveying and Mapping,2013,38(3):28-30.

[8] Haugerud R A,Harding D J.Some algorithms for virtual deforestation(VDF)of LiDAR topographic survey data[J].International Archives of the Photogrammetry and Remote Sensing,2001,34(W4):211-217.

[9] 乔纪纲,陈明辉,艾彬,等.SVM用于LiDAR数据的地物分类[J].测绘通报,2013(7):35-38,42. Qiao J G,Chen M H,Ai B,et al.Land cover classification from LiDAR data based on SVM[J].Bulletin of Surveying and Mapping,2013(7):35-38,42.

[10] 张熠斌,隋立春,曲佳,等.基于数学形态学算法的机载LiDAR点云数据快速滤波[J].测绘通报,2009(5):16-18,65. Zhang Y B,Sui L C,Qu J,et al.Fast filtering of airborne LiDAR point cloud data based on mathematical morphology[J].Bulletin of Surveying and Mapping,2009(5):16-18,65.

[11] 李鹏程,王慧,刘志青,等.一种从机载LiDAR点云数据获取DEM的方法[J].测绘通报,2012(5):59-62. Li P C,Wang H,Liu Z Q,et al.A method of deriving DEM from airborne LiDAR points cloud data[J].Bulletin of Surveying and Mapping,2012(5):59-62.

[12] 王宗跃,马洪超,徐宏根,等.基于LiDAR点云数据的水体轮廓线提取方法研究[J].武汉大学学报:信息科学版,2010,35(4):432-435. Wang Z Y,Ma H C,Xu H G,et al.A method for extracting water contour lines from LiDAR point clouds data[J].Geomatics and Information Science of Wuhan University,2010,35(4):432-435.

[13] 杨晓云,梁鑫.基于参数统计的LiDAR数据分割算法[J].广西民族师范学院学报,2012,29(3):33-35. Yang X Y,Liang X.LiDAR segmentation based on statistics analysis[J].Journal of Guangxi Normal University for Nationalities,2012,29(3):33-35.

[14] Axelsson P.DEM generation from laser scanner data using adaptive TIN models[J].International Archives of Photogrammetry and Remote Sensing,2000(B4):110-117.

[15] 隋立春,张熠斌,张硕,等.基于渐进三角网的机载LiDAR点云数据滤波[J].武汉大学学报:信息科学版,2011,36(10):1159-1163. Sui L C,Zhang Y B,Zhang S,et al.Filtering of airborne LiDAR point cloud data based on progressive TIN[J].Geomatics and Information Science of Wuhan University,2011,36(10):1159-1163.

[1] ZHANG Jinghua, OUYANG Yuan, LIU Hong, HUANG Hanxiao, ZHANG Tengjiao, LI Fu, LI Tong. Eco-geological vulnerability assessment based on major controlling factors: A case study of Xichang City, Sichuan Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 181-191.
[2] WANG Shuang, ZHANG Lei, ZHANG Junyong, WANG Yile. Characteristics of GIS applications in national fitness[J]. Remote Sensing for Natural Resources, 2021, 33(4): 265-271.
[3] YANG Wenna, ZHOU Liang, SUN Dongqi. Ecological vulnerability assessment of the Yellow River basin based on partition-integration concept[J]. Remote Sensing for Natural Resources, 2021, 33(3): 211-218.
[4] YING Kui, LI Xudong, CHENG Dongya. Remote sensing assessment of ecological environment quality in karst trough basin[J]. Remote Sensing for Land & Resources, 2020, 32(3): 173-182.
[5] Jie CHEN, Zihong GAO, Shanshan WANG, Dingjian JIN. A review on the development of aerial remote sensing geological survey technology in the Three Gorges Reservoir area[J]. Remote Sensing for Land & Resources, 2020, 32(2): 1-10.
[6] Xiaodong ZHANG, Xiangnan LIU, Zhipeng ZHAO, Dan WU, Wenzhong WU, Xiaodong CHU. Geological disaster hazard assessment in Yanchi County based on AHP[J]. Remote Sensing for Land & Resources, 2019, 31(3): 183-192.
[7] Ke ZHANG, Jianzhong LIU, Weiming CHENG. Morphological features and spatial distribution of the lunar Copernican secondary craters[J]. Remote Sensing for Land & Resources, 2019, 31(1): 255-263.
[8] Wen JIANG, Qiming QIN. Research on emergency evacuation vulnerability of the traffic network model based on GIS[J]. Remote Sensing for Land & Resources, 2019, 31(1): 277-282.
[9] Yuanwen ZENG, Yi DI, Yan HU, Jing CHEN, Songjiang DUAN. An analysis of spatial distribution and optimization of rural settlements:A case study of Niejia Village in Shitan Town,Hechuan District,Chongqing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 113-119.
[10] Min YANG, Guijun YANG, Yanjie WANG, Yongfeng ZHANG, Zhihong ZHANG, Chenhong SUN. Remote sensing analysis of temporal-spatial variations of urban heat island effect over Beijing[J]. Remote Sensing for Land & Resources, 2018, 30(3): 213-223.
[11] Rui LIU, Xu JIANG, Jing ZHAO, Yunfan LI. GIS based research on the spatial distribution of population density in illegal buildings in Shenzhen City[J]. Remote Sensing for Land & Resources, 2018, 30(1): 233-237.
[12] GAO Hui, ZHANG Jinghua, ZHANG Jianlong. Remote sensing ecological environment survey of county area based on ZY1-02C: A case study of Puge County[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 144-150.
[13] ZHAN Yating, ZHU Yefei, SU Yiming, CUI Yanmei. Eco-environmental changes in Yancheng coastal zone based on the domestic resource satellite data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 160-165.
[14] CHEN Mingye, CHEN Lei, ZHOU Xun. A remote sensing study of spatio-temporal changes of ecological environment of Shandian River[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 166-172.
[15] LI Ru, ZHU Boqin, TONG Xiaowei, YUE Yuemin, GAN Huayang, WAN Sida. Change analysis in Hainan Dongzhai Wetland Reserve based on remote sensing data obtained during 2002-2013[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 149-155.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech