Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (4) : 41-45     DOI: 10.6046/gtzyyg.2020.04.06
|
Remote sensing image classification based on super pixel and peak density
SUN Ke()
Henan College of Surveying and Mapping, Zhengzhou 451464, China
Download: PDF(1929 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In order to give full play to the advantages of hyperspectral spatial information and peak density clustering algorithm in dividing remote sensing image features, this paper proposes a hyperspectral image classification method based on the combination of hyperpixel and peak density features. Superpixel segmentation technology makes full use of the spatial and spectral information of hyperspectral images, dividing hyperspectral images into hyperpixels, extracting the gray value of hyperpixels as an important feature of peak density classification, selecting the spectrum with the highest peak density as the spectral cluster of the whole image, using the visual and hyperpixels as the basic units of classification, and then obtaining the pixels and hyperpixels respectively. The membership relation is obtained by the difference between spectral clusters. Finally, the image classification is completed by combining the membership degree. Experiments show that the proposed algorithm takes less time than other methods under the condition of ensuring the highest classification accuracy, and meets the requirements of hyperspectral image information extraction and analysis.

Keywords hyperspectral image      peak density      superpixel pixel      feature fusion      image classification     
:  TP751  
Issue Date: 23 December 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ke SUN
Cite this article:   
Ke SUN. Remote sensing image classification based on super pixel and peak density[J]. Remote Sensing for Land & Resources, 2020, 32(4): 41-45.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.04.06     OR     https://www.gtzyyg.com/EN/Y2020/V32/I4/41
Fig.1  Operation steps of SLIC-DP algorithm
Fig.2  Hyperspectral image Pavia University data set
Fig.3  Classification results of Pavia University data set
算法 ARI 时间/s
K-Means 0.360 2.024
SLIC-KMeans 0.376 20.290
SLIC-DP-P 0.456 19.703
SLIC-DP-SP 0.468 16.867
Tab.1  Classification accuracy and calculation time of algorithm
[1] 崔宾阁, 吴亚男, 钟勇. 高光谱图像滚动引导递归滤波与地物分类[J]. 遥感学报, 2019,23(3):431-442.
[1] Cui B G, Wu Y N, Zhong Y. Rolling guided recursive filtering and feature classification of hyperspectral images[J]. Journal of Remote Sensing, 2019,23(3):431-442.
[2] 龚希, 吴亮, 谢忠, 等. 融合全局和局部深度特征的高分辨率遥感影像场景分类方法[J]. 光学学报, 2019,39(3):19-29.
[2] Gong X, Wu L, Xie Z, et al. Classification method of high-resolution remote sensing scenes based on fusion of global and local deep features[J]. Acta Optica Sinica, 2019,39(3):19-29.
[3] 谷雨, 徐英, 郭宝峰. 融合空谱特征和集成超限学习机的高光谱图像分类[J]. 测绘学报, 2018,47(9):1238-1249.
[3] Gu Y, Xu Y, Guo B F. Hyperspectral image classification by combination of spatial-spectral features and ensemble extreme learning matchines[J]. Acta Geodaetica et Cartographica Sinica, 2018,47(9):1238-1249.
[4] 陈洋, 范荣双, 徐启恒, 等. 结合光谱相似和相位一致的高分辨率影像分类[J]. 测绘科学, 2018,43(11):142-146.
[4] Chen Y, Fan R S, Xu Q H, et al. A high resolution image classification method considering spectral similarity and phase consistency[J]. Science of Surveying and Mapping, 2018,43(11):142-146.
[5] Rodriguez A, Laio A. Clustering by fast search and find of density peaks[J]. Science, 2014,344(6191):1492-1496.
doi: 10.1126/science.1242072 pmid: 24970081 url: https://www.ncbi.nlm.nih.gov/pubmed/24970081
[6] 许毅平. 基于高光谱图像多特征分析的目标提取研究[D]. 武汉:华中科技大学, 2008.
[6] Xu Y P. Study on object extraction based on multi-feature from hyperspectral image[D]. Wuhan:Huazhong University of Science and Technology, 2008.
[7] 唐贵华. 基于密度排序聚类和超像素分割的高光谱遥感影像降维方法研究[D]. 深圳:深圳大学, 2016.
[7] Tang G H. Ranking-based-clustering and superpixel segmentation for hyperspectral remote imagery dimensionality reduction[D]. Shenzhen:Shenzhen University, 2016.
[8] Sun X, Yang L, Gao L, et al. Hyperspectral image clustering method based on artificial bee colony algorithm and Markov random fields[J]. Journal of Applied Remote Sensing, 2015,9(1):095047.
[9] Ren X, Malik J. Learning a classification model for segmentation[C]// Proceedings of Ninth IEEE International Conference on Computer Vision, 2003.
[10] 方旭, 王光辉, 杨化超, 等. 结合均值漂移分割与聚类分析的遥感影像变化检测[J]. 测绘通报, 2017(12):68-71.
[10] Fang X, Wang G H, Yang H C, et al. Remote sensing imageries change detection combined with mean-shift segmentation and cluster analysis[J]. Bulletin of Surveying and Mapping, 2017(12):68-71.
[11] Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(11):2274-2282.
doi: 10.1109/TPAMI.2012.120 pmid: 22641706 url: https://www.ncbi.nlm.nih.gov/pubmed/22641706
[12] Ren C Y, Reid I. gSLIC:A real-time implementation of SLIC superpixel segmentation[R]. Oxford:University of Oxford,Department of Engineering, 2011.
[13] Kim K S, Zhang D, Kang M C, et al. Improved simple linear iterative clustering superpixels[C]// IEEE International Symposium on Consumer Electronics. IEEE, 2013.
[14] Saranathan A M, Parente M. Uniformity-based superpixel segmentation of hyperspectral images[C]// IEEE Transactions on Geoscience and Remote Sensing. IEEE, 2016,54(3):1419-1430.
[1] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[2] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[3] JIANG Yanan, ZHANG Xin, ZHANG Chunlei, ZHONG Chengcheng, ZHAO Junfang. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
[4] WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3): 63-71.
[5] LIU Wanjun, GAO Jiankang, QU Haicheng, JIANG Wentao. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 97-106.
[6] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[7] BAI Junlong, WANG Zhangqiong, YAN Haitao. A K-means clustering-guided threshold-based approach to classifying UAV remote sensed images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 114-120.
[8] HAN Yanling, CUI Pengxia, YANG Shuhu, LIU Yekun, WANG Jing, ZHANG Yun. Classification of hyperspectral image based on feature fusion of residual network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 11-19.
[9] LU Qi, QIN Jun, YAO Xuedong, WU Yanlan, ZHU Haochen. Buildings extraction of GF-2 remote sensing image based on multi-layer perception network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 75-84.
[10] CAI Zhiling, WENG Qian, YE Shaozhen, JIAN Cairen. Remote sensing image scene classification based on Inception-V3[J]. Remote Sensing for Land & Resources, 2020, 32(3): 80-89.
[11] Pengyan HUANG, Lijing BU, Yongliang FAN. Integrating visual features in polarimetric SAR image classification[J]. Remote Sensing for Land & Resources, 2020, 32(2): 88-93.
[12] Benzuo YAO, Fang HE. Spatial and spectral feature hierarchical fusion for hyperspectral image feature extraction[J]. Remote Sensing for Land & Resources, 2019, 31(3): 59-64.
[13] Xiaolu LIAO, Jia LIU, Xingxia ZHOU. Feature extraction and classification of hyperspectral image with ground-sky synchronization test[J]. Remote Sensing for Land & Resources, 2019, 31(3): 65-71.
[14] Ruhan A, Fang HE, Biaobiao WANG. Hyperspectral images classification via weighted spatial-spectral dimensionality reduction principle component analysis[J]. Remote Sensing for Land & Resources, 2019, 31(2): 17-23.
[15] Haicheng QU, Yue GUO, Yuanyuan WANG. Hyperspectral image classification based on dominant sets clustering and Markov random fields[J]. Remote Sensing for Land & Resources, 2019, 31(2): 24-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech