Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (2) : 176-183     DOI: 10.6046/zrzyyg.2021206
|
Application of the software development kit of GXL in the processing of domestic satellite data
ZHANG Wei1(), ZHANG Tao1(), ZHENG Xiongwei2, QI Jianwei1, WANG Guanghui1
1. Land Satellite Remote Sensing Application Center, MNR, Beijing 100048, China
2. China Geological Survey, Beijing 100037, China
Download: PDF(3974 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The GXL (GeoImaging Accelerator) is a new generation of distributed processing platform for remote sensing data. It is fast, efficient, and flexible and plays an important role in the processing of domestic satellite data. This study investigated the software development kit (SDK) of GXL from the aspects of view, controller, and model based on the MVC (Model View Controller) framework of GXL. Furthermore, it developed a new algorithm processing module and employed distributed program deployment to enhance the function and algorithms of satellite data processing. An experiment was carried out to process domestic satellite (GF-1, GF-2, and ZY1-02C) data. The experiment results show that the SDK of GXL allows for flexibly expanding the processes for satellite data processing and improving the productivity of domestic satellite products. Therefore, the SDK of GXL can better satisfy the demands of various industries.

Keywords GXL SDK      domestic satellite      algorithm module      processing flow      optimization efficiency     
ZTFLH:  TP79  
Corresponding Authors: ZHANG Tao     E-mail: dave6806@163.com;zhangtaosas@qq.com
Issue Date: 20 June 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei ZHANG
Tao ZHANG
Xiongwei ZHENG
Jianwei QI
Guanghui WANG
Cite this article:   
Wei ZHANG,Tao ZHANG,Xiongwei ZHENG, et al. Application of the software development kit of GXL in the processing of domestic satellite data[J]. Remote Sensing for Natural Resources, 2022, 34(2): 176-183.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021206     OR     https://www.gtzyyg.com/EN/Y2022/V34/I2/176
Fig.1  Component architecture diagram of GXL
Fig.2  MCV framework of GXL
Fig.3  Development on Model
元素 类型 描述信息
<Name> String 输出域名
<Description> String 用以对变量进行说明描述
<TextConstraint> Bolean 此选项是否为必须
<FileConstraint> Constraint 特批输入框为文件属性,可限制长度
<FolderConstraint> Constraint 特批输入框为文件夹属性,可限制其长度
<IntegerConstraint> Constraint 指定输入为整形数据
<DoubleContraint> Constraint 指定输入为双精度类型数据
<ComboConstraint> Constraint 指定为下拉框选择组件
Tab.1  Structure elements of GUI RPM XML
Fig.4  Result of View of orthorectification module
Fig.5  Development graph of Controller
Fig.6  Domestic satellite data process of GXL
Fig.7  Figure of unzip module’s MCV
卫星类型 传感器类型 完整影像数据数/个
GF-1 PMS
WFV
2
1
GF-2 PMS 1
ZY1-02C PMS
HRC
2
1
Tab.2  Description of original image integrity
Fig.8  Model design of original image integrity check
新增模块 是否有
子作业
描述信息
大范围基础数据快速索引和解析 建立成果数据与参考资料之间的索引,快速实现几何控制点的查找
成果元数据生成 针对成果数据生成xml描述文件和四置范围矢量数据
质检报告生成 为影像成果生成快视图、拇指图和pdf质检报告
成果归档预处理 建立成果标识号
成果归档 依据业务成果重命名规则对成果数据重新命名整理
Tab.3  Description of orthorectification result’s second development module
Fig.9  Domestic satellite data processing of expansion based on the second development of GXL
卫星类型 景数 方案一/s 方案二/s 加速比
平均
时间
GXL
开发
平均
时间
人工
单机
GF-1 322 11.0 251.5 10.6 3 413.2
GF-2 215 36.0 361.3 34.0 7 310.0
ZY1-02C 76 10.5 80.2 10.4 790.4
总计 613 693.0 11 513.6 16.614
Tab.4  Time table of unzip module
事件类型 方案一/s 方案二/s 加速比
时间统计 9.0 7.6 0.84
可操作性 可嵌入GXL流程,操作简便 独立不能嵌入流程
实验结果 结果相同
Tab.5  Time table of original image integrity check module
作业模块 方案一/s 方案二/s 加速比
M1 29.0 25.0 0.86
M2 4 641.0 15 922.0 3.43
M3 9 423.5 219 638.0 23.30
M4 15.0 14.0 0.93
M5 704.0 8 814.2 12.52
总计 14 813.0 244 413.2 16.49
Tab.6  Time table of orthorectification result module
作业模块 方案一/s 方案二/s 加速比
原始影像解压缩 693.0 11 513.6 0.86
影像完整性分析 9.0 7.6 0.84
正射产品成果整理 14 813.0 244 413.2 16.49
总计 15 515.0 255 934.4 16.48
Tab.7  Time table of orthorectification result module
Fig.10  Comparison diagram of efficiency of each module in secondary development
[1] 王伟, 毛继宗, 张溪. 面向地理国情的正射影像集群生产模式探讨[J]. 地理空间信息, 2016, 14(8):5-7.
[1] Wang W, Mao J Z, Zhang X. Discussion on the production model of orthorectification in geographical conditions census by clusters[J]. Geospatial Information, 2016, 14(8):5-7.
[2] 米超川, 刘英. 基于GXL系统利用高分辨率卫星影像制作正射影像[J]. 测绘标准化, 2014, 30(2):43-44.
[2] Mi C C, Liu Y. DOM production by using high-resolution satellite images based on GXL system[J]. Standardization of Surveying and Mapping, 2014, 30(2):43-44.
[3] 杨静, 周晓敏, 韩鹏飞. PCI GXL在国情普查项目中的应用[J]. 测绘与空间地理信息, 2014, 37(6):154-156.
[3] Yang J, Zhou X M, Han P F. The application of the PCI GXL project in the state of the census[J]. Geomatics & Spatial Infomation Technology, 2014, 37(6):154-156.
[4] Bai J, Gao J, Dang Y, et al. Research on automated data processing method of PCI geographic imaging accelerator (GXL) system for big data of superview-1 remote sensing image[J]. ISPRS-International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2020, XLII-3/W10:691-697
doi: 10.5194/isprs-archives-XLII-3-W10-691-2020 url: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-3-W10/691/2020/
[5] Xu Z B, Li A H, Yan Y, et al. TH01 satellite image data processing based on GXL[J]. Geomatics & Spatial Information Technology, 2017:86-88.
[6] Wu X T, Xu R K, Wang Y M. Study on production of massive remote sensing data based on GXL[J]. Modern Surveying and Mapping, 2015:23-25.
[7] Hruby F, Melamed S, Ressl R, et al. Mosaicking mexico-the big picture of big data[J]. XXIII ISPRS Congress,Commission II. 2016, 41(B2):407-412.
[8] 张世群, 罗天银, 张平. PCI Geomatica 2013(GXL)软件在地理国情监测卫星影像生产中的应用[J]. 测绘, 2014, 37(5):233-236.
[8] Zhang S Q, Luo T Y, Zhang P. The application of PCI geomatica 2013(GXL) software in the production of satellite image for geographic conditions monitoring[J]. Surveying and Mapping, 2014, 37(5):233-236.
[9] 乔晓虹, 文广. GXL影像配准在1∶50000 DEM地区地理国情普查标准时点核准正射影像生产中的应用[C]// 云南省测绘地理信息学会2015年学术年会,昆明, 2015:303-307.
[9] Qiao X H, Wen G. Application of GXL image registration of standard time point approval orthorectification in 1∶50000 DEM region of geographical conditions census project[C]// Compilation of Papers about Surveying and Mapping Geographic Information.Kunming China, 2015:303-307.
[10] 贾杰, 黄明莹, 万昀昕, 等. 基于PCI GXL的地理国情监测整景影像纠正技术研究[J]. 测绘与空间地理信息, 2018, 41(12):129-132.
[10] Jia J, Huang M Y, Wang Y X, et al. Research on image rectification technology of geographical condition monitoring based on PCI GXL[J]. Geomatics & Spatial Information Technology, 2018, 41(12):129-132.
[11] 孔令尧. 地理国情监测数字正射影像快速生产方法研究[J]. 经纬天地, 2020(4):82-86.
[11] Kong L Y. Research on rapid production method of digital orthophoto image for geographic national conditions monitoring[J]. Survey World, 2020(4):82-86.
[12] 李芹. 基于GEOWAY CIPS,PCI GXL在数字正射影像生产中的应用[J]. 测绘与空间地理信息, 2015, 38(12):141-142.
[12] Li Q. The Application of DOM based on GEOWAY CIPS and PCI GXL[J]. Geomatics & Spatial Infomation Technology, 2015, 38(12):141-142.
[13] 王伟, 杨海明, 向娟. 基于GXL的影像生产管理系统设计与应用[J]. 地理空间信息, 2017, 15(9):77-78.
[13] Wang W, Yang H M, Xiang J. Design and application of image production management system based on GXL[J]. Geospatial Information. 2017, 15(9):77-78.
[14] Chu J, Zhao J, Gao N, et al. Application of domestic satellite image fast ortho-rectification method in dynamic remote sensing monitoring of sea area[C]// 9th International Conference on Intelligent Control and Information Processing (ICICIP).Wanzhou, 2018:134-138.
[15] 陶兰花, 马静, 李娜娜, 等. 基于PCI GXL与INPHO软件在GF-7影像生产中的应用[J]. 地理空间信息, 2021, 19(8):90-92,96.
[15] Tao L H, Ma J, L N N, et al. Application of GF-7 image production based on PCI GXL and INPHO software[J]. Geospatial Information, 2021, 19(8):90-92,96.
[1] ZHENG Xiongwei, PENG Bei, SHANG Kun. Assessment of the interpretation ability of domestic satellites in geological remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 1-10.
[2] JIANG Xiao, LU Yunge, SUN Ang, LI Yongzhi, LIAN Zheng. The application of domestic GF-1 satellite data to geological and mineral resources survey abroad: A case study of Faryab area, Iran[J]. Remote Sensing for Land & Resources, 2021, 33(1): 199-204.
[3] XIAO Chenchao, DONG Lina, CHEN Weirong, WEI Hongyan. The capability of domestic satellites’ overseas geological service based on multiple factor analysis[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 8-12.
[4] DONG Shuangfa, JIANG Xue, LI Mingsong, WANG Ruijun, SUN Yongbin. Domestic satellite data of remote sensing geological interpretation system based on the total factor: A case study of the arid and semi-arid mountains[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 21-26.
[5] DING Yuxue, CHU Yu, XUE Guangyin. Using domestic satellite data to carry out wetland survey:Exemplified by Heilongjiang Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 151-154.
[6] ZHENG Xiongwei, WEI Yingjuan, LI Chunying, LEI Bing, GAN Yuhang. The realization of intelligent optimization based on multi-source and massive domestic satellite image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 13-20.
[7] Ding Yuxue. Research on natural resources based on domestic satellite data:Exemplified by Midwest Heilongjiang Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 121-126.
[8] ZHANG Youying, YU Jiangkuan, ZHANG Dandan, LIN Huanuan. Practical solution for background data update of domestic satellite images: A case study of remote sensing images of geological hazard prone areas[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 149-157.
[9] CHOU Li-Ming, MENG Ji-Hua, WU Bing-Fang, CHEN Xue-Yang, DU Xin, ZHANG Fei-Fei. Research on Standard Preprocessing Flow for HJ-1A HSI Level 2 Data Product[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(1): 77-82.
[10] Wu Yun-Zhao, TANG Ze-Sheng. IIM DATA PROCESSING FLOW AND ITS GEOLOGICAL APPLICATION[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(4): 25-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech